ANN Diagnosis for Defect Detection and Classification in Two-Layer Printed Circuit Boards Using Supervised Back-Propagation Algorithm

Author(s):  
Rionel Belen Caldo
2021 ◽  
Vol 18 (4) ◽  
pp. 4411-4428
Author(s):  
Venkat Anil Adibhatla ◽  
◽  
Huan-Chuang Chih ◽  
Chi-Chang Hsu ◽  
Joseph Cheng ◽  
...  

2019 ◽  
Vol 4 (2) ◽  
pp. 110-116 ◽  
Author(s):  
Runwei Ding ◽  
Linhui Dai ◽  
Guangpeng Li ◽  
Hong Liu

2006 ◽  
Vol 113 ◽  
pp. 85-90
Author(s):  
Evaras Zitkevicius ◽  
Romanas Martavicius

An integration degree of modern printed circuit boards (PCB) is continually increasing. One of the important stages in the manufacturing of electronic devices is component soldering onto PCB pads. The soldering process is affected by many factors, which may lead to the formation of undesirable soldering defects. Some kinds of defects including bridge defects are detected visually. In the current article the possibility of bridge defect detection in a multi-pin surface mount component PCB images using wavelet transform is analyzed.


2021 ◽  
Vol 14 (1) ◽  
pp. 8
Author(s):  
Ihar Volkau ◽  
Abdul Mujeeb ◽  
Wenting Dai ◽  
Marius Erdt ◽  
Alexei Sourin

Deep learning provides new ways for defect detection in automatic optical inspections (AOI). However, the existing deep learning methods require thousands of images of defects to be used for training the algorithms. It limits the usability of these approaches in manufacturing, due to lack of images of defects before the actual manufacturing starts. In contrast, we propose to train a defect detection unsupervised deep learning model, using a much smaller number of images without defects. We propose an unsupervised deep learning model, based on transfer learning, that extracts typical semantic patterns from defect-free samples (one-class training). The model is built upon a pre-trained VGG16 model. It is further trained on custom datasets with different sizes of possible defects (printed circuit boards and soldered joints) using only small number of normal samples. We have found that the defect detection can be performed very well on a smooth background; however, in cases where the defect manifests as a change of texture, the detection can be less accurate. The proposed study uses deep learning self-supervised approach to identify if the sample under analysis contains any deviations (with types not defined in advance) from normal design. The method would improve the robustness of the AOI process to detect defects.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1547
Author(s):  
Venkat Anil Adibhatla ◽  
Huan-Chuang Chih ◽  
Chi-Chang Hsu ◽  
Joseph Cheng ◽  
Maysam F. Abbod ◽  
...  

In this study, a deep learning algorithm based on the you-only-look-once (YOLO) approach is proposed for the quality inspection of printed circuit boards (PCBs). The high accuracy and efficiency of deep learning algorithms has resulted in their increased adoption in every field. Similarly, accurate detection of defects in PCBs by using deep learning algorithms, such as convolutional neural networks (CNNs), has garnered considerable attention. In the proposed method, highly skilled quality inspection engineers first use an interface to record and label defective PCBs. The data are then used to train a YOLO/CNN model to detect defects in PCBs. In this study, 11,000 images and a network of 24 convolutional layers and 2 fully connected layers were used. The proposed model achieved a defect detection accuracy of 98.79% in PCBs with a batch size of 32.


Sign in / Sign up

Export Citation Format

Share Document