Prototype-Based Classification for Image Analysis and Its Application to Crop Disease Diagnosis

Author(s):  
Ernest Mwebaze ◽  
Michael Biehl
Author(s):  
Matthew N. O. Sadiku ◽  
Chandra M. M Kotteti ◽  
Sarhan M. Musa

Machine learning is an emerging field of artificial intelligence which can be applied to the agriculture sector. It refers to the automated detection of meaningful patterns in a given data.  Modern agriculture seeks ways to conserve water, use nutrients and energy more efficiently, and adapt to climate change.  Machine learning in agriculture allows for more accurate disease diagnosis and crop disease prediction. This paper briefly introduces what machine learning can do in the agriculture sector.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractImage analysis in histopathology provides insights into the microscopic examination of tissue for disease diagnosis, prognosis, and biomarker discovery. Particularly for cancer research, precise classification of histopathological images is the ultimate objective of the image analysis. Here, the time-frequency time-space long short-term memory network (TF-TS LSTM) developed for classification of time series is applied for classifying histopathological images. The deep learning is empowered by the use of sequential time-frequency and time-space features extracted from the images. Furthermore, unlike conventional classification practice, a strategy for class modeling is designed to leverage the learning power of the TF-TS LSTM. Tests on several datasets of histopathological images of haematoxylin-and-eosin and immunohistochemistry stains demonstrate the strong capability of the artificial intelligence (AI)-based approach for producing very accurate classification results. The proposed approach has the potential to be an AI tool for robust classification of histopathological images.


2018 ◽  
Vol 10 (3) ◽  
pp. 239-248
Author(s):  
S. Konyeha ◽  
F. A. Imouokhome

An expert system imitates the decision–making adeptness of a human expert. They are intended to answer complicated questions characterized mainly as if–then rules instead of traditional procedural code. A major problem facing the cultivation of rubber (Hevea brasiliensis) in developing countries is the destructive effect of pathogens which result in about fifty percent (50%) loss in crop yield. This problem persists, due to a communication gap between agricultural researchers, such that field extension officers, and farmers are hampered by various operational and logistic challenges. This paper is an effort to bridge this gap, and hence features an expert system that can be accessed online by farmers.  The expert system allows farmers to select disease symptoms presented in categories from a JAVA based user friendly graphical interface. The output generated by the rule–base engine, diagnoses the diseases of the rubber crop, and suggests curative and preventive measures. The main source of information for developing the expert system’ knowledge–base was the Rubber Research Institute, Iyanomo, Edo State, Nigeria.


2021 ◽  
Vol 9 (1) ◽  
pp. 1406-1412
Author(s):  
K. Santhi, A. Rama Mohan Reddy

Cardiovascular disease (CVD) is one of the critical diseases and the most common cause of morbidity and mortality worldwide. Therefore, early detection and prediction of such a disease is extremely essential for a healthy life. Cardiac imaging plays an important role in the diagnosis of cardiovascular disease but its role has been limited to visual assessment of heart structure and its function. However, with the advanced techniques and tools of big data and machine learning, it become easier to clinician to diagnose the CVD. Stenosis with in the Coronary Arteries (CA) are often determined by using the Coronary Cine Angiogram (CCA). It comes under the invasive image modality. CCA is the effective method to detect and predict the stenosis. In this paper a coronary analysis automation method is proposed in disease diagnosis. The proposed method includes pre-processing, segmentation, identifying vessel path and statistical analysis.


2010 ◽  
Vol 2010 ◽  
pp. 1-36 ◽  
Author(s):  
Raquel González-Fernández ◽  
Elena Prats ◽  
Jesús V. Jorrín-Novo

Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.


Author(s):  
Punnarai Siricharoen ◽  
Bryan Scotney ◽  
Philip Morrow ◽  
Gerard Parr

Sign in / Sign up

Export Citation Format

Share Document