The Saint Lawrence Island Polynya: A 25-Year Evaluation of an Analogue for Climate Change in Polar Regions

Author(s):  
Jacqueline M. Grebmeier ◽  
Lee W. Cooper
Keyword(s):  
2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2020 ◽  
Vol 18 (1) ◽  
pp. 16-35
Author(s):  
Aaron S. Allen

The climate crisis impacts the northern polar regions in disproportionate ways, and ecomusicology is an academic discourse. In bringing these two seemingly unrelated pairs together, I argue for academic discourse in ecomusicology that makes connections with the climate crisis in music and sound studies. What can ecomusicology offer humanity as we face climate catastrophe? While not a panacea, ecomusicology can serve to further collapse the unfortunate nature-culture dichotomy that is at the root of so many social and environmental problems.  Academic discourse always should have a place for titillation, but we must not avoid the climate crisis in music scholarship, for that only enables climate change denialism. I elaborate on an ecomusicology that is both new and not new, providing examples of climate connections in ecomusicological discourse. Ultimately, we must make such connections and do something about the problems we face as a civilization.


2001 ◽  
Vol 13 (4) ◽  
pp. 353-353
Author(s):  
Clive Howard-Williams

How many times have you seen statements similar to the following: “Antarctica is a global barometer”, “Antarctica is a warning beacon for global change”, or “Antarctica is a warning beacon for global change”, or “Antarctica is the most sensitive continent to climate change”? The frequency of such statements in this, and other polar journals, is significant. We know that the polar regions are highly sensitive to natural and human induced changes that originate elsewhere on our planet, and the literature is extensive and growing. At the large scale there is increasing evidence of both direct and indirect linkages between climate patterns (e.g. ENSO) in the Pacific and Atlantic oceans and Antarctic climate. At a smaller scale are the follow-on linkages to glacier dynamics, including surface melt, glacier stream flows, lake levels, beaches, sea-ice dynamics and ice tongues. All of these have major repercussions on Antarctic ecosystems. The phase change from water (liquid) to ice (solid) occurs over avery small temperature range (depending on salinity, pressure etc). Thus, for a pond ecosystem, a change in temperature of less than one degree Celsius means the difference between a functioning aquatic ecosystem, and a frozen ecosystem. The recent IPCC report (Climate Change 2001 [3 vols], Cambridge University Press) leaves little doubt of the significant changes to world climate now taking place. As Antarctic scientists we surely must therefore consider that the principal issue to be addressed in Antarctica at present is that of “Responses to a changing climate”.


Oryx ◽  
2007 ◽  
Vol 41 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Mark P. Simmonds ◽  
Stephen J. Isaac

Climate change is now known to be affecting the oceans. It is widely anticipated that impacts on marine mammals will be mediated primarily via changes in prey distribution and abundance and that the more mobile (or otherwise adaptable) species may be able to respond to this to some extent. However, the extent of this adaptability is largely unknown. Meanwhile, within the last few years direct observations have been made of several marine mammal populations that illustrate reactions to climate change. These observations indicate that certain species and populations may be especially vulnerable, including those with a limited habitat range, such as the vaquita Phocoena sinus, or those for which sea ice provides an important part of their habitat, such as narwhals Monodon monoceros, bowhead Balaena mysticetus and beluga Delphinapterus leucas whales and polar bears Ursus maritimus. Similarly, there are concerns about those species that migrate to feeding grounds in polar regions because of rapidly changing conditions there, and this includes many baleen whale populations. This review highlights the need to take projected impacts into account in future conservation and management plans, including species assessments. How this should be done in an adequately precautionary manner offers a significant challenge to those involved in such processes, although it is possible to identify at this time at least some species and populations that may be regarded as especially vulnerable. Marine ecosystems modellers and marine mammal experts will need to work together to make such assessments and conservation plans as robust as possible.


2014 ◽  
Vol 281 (1779) ◽  
pp. 20133128 ◽  
Author(s):  
Samuel A. Iverson ◽  
H. Grant Gilchrist ◽  
Paul A. Smith ◽  
Anthony J. Gaston ◽  
Mark R. Forbes

Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears ( Ursus maritimus ) to hunt for seals and hampered bears’ ability to meet their energetic demands. In this study, we examined polar bears’ use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider ( Somateria mollissima ) and thick-billed murre ( Uria lomvia ) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010–2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator–prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems.


2016 ◽  
Vol 97 (9) ◽  
pp. 1631-1647 ◽  
Author(s):  
Thomas Jung ◽  
Neil D. Gordon ◽  
Peter Bauer ◽  
David H. Bromwich ◽  
Matthieu Chevallier ◽  
...  

Abstract The polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with fewer in situ observations, and with numerous local physical processes that are less well represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the polar observing system; the use of coupled atmosphere–sea ice–ocean models, even for short-term prediction; and insight into polar–lower-latitude linkages and their role for forecasting. Given the enormity of some of the challenges ahead, in a harsh and remote environment such as the polar regions, it is argued that rapid progress will only be possible with a coordinated international effort. More specifically, it is proposed to hold a Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 in which the international research and operational forecasting communites will work together with stakeholders in a period of intensive observing, modeling, prediction, verification, user engagement, and educational activities.


mSphere ◽  
2021 ◽  
Author(s):  
Arkadiy I. Garber ◽  
Jessica R. Zehnpfennig ◽  
Cody S. Sheik ◽  
Michael W. Henson ◽  
Gustavo A. Ramírez ◽  
...  

The impacts of climate change in polar regions, like Antarctica, have the potential to alter numerous ecosystems and biogeochemical cycles. Increasing temperature and freshwater runoff from melting ice can have profound impacts on the cycling of organic and inorganic nutrients between the pelagic and benthic ecosystems.


2012 ◽  
Vol 49 (06) ◽  
pp. 49-3279-49-3279
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document