Control Planning for Autonomous Off-Grid Outdoor Lighting Systems Based on Energy Consumption Preferences

Author(s):  
Igor Wojnicki
Author(s):  
Michael J. Cheadle ◽  
Gregory F. Nellis ◽  
Sanford A. Klein ◽  
William A. Beckman

Hybrid solar lighting (HSL) systems distribute natural sunlight to luminaires located in office or retail buildings in order to reduce energy consumption associated with conventional lighting systems. HSL systems reduce energy consumption directly by reducing the lighting energy and indirectly by reducing the associated cooling loads. A key component of the HSL system is the fiber optic bundle (FOB) that transmits the light from the collector to the luminaire. The observed thermal failure of the FOB when exposed to concentrated sunlight has motivated the development of a thermal model of this component. This paper describes the development of a predictive thermal model of the heat transfer in an FOB for an HSL system. The model is verified experimentally against temperature measurements obtained in the lab under controlled conditions and provides a powerful design tool that can be used to evaluate alternative thermal management strategies.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1707 ◽  
Author(s):  
Lambros T. Doulos ◽  
Ioannis Sioutis ◽  
Aris Tsangrassoulis ◽  
Laurent Canale ◽  
Kostantinos Faidas

Because of the absence of lighting calculation tools at the initial stage of tunnel design, the lighting systems are usually over-dimensioned, leading to over illumination and increased energy consumption. For this reason, a fine-tuning method for switching lighting stages according to the traffic weighted L20 luminance is proposed at no additional cost. The method was applied in a real –case scenario, where L20 luminance of the access zone at eleven (11) existing tunnels was calculated. The traffic weighted method of CR14380 was used in order to calculate the actual luminance levels for the entrance zone. The new transition zone, which decreases luminance curves, was produced and compared with the existing ones. Thus, a new switching control was proposed and programed for the Supervisory Control and Data Acquisition (SCADA) system of the tunnel. The signals of the corresponding eleven L20 meters for a period of eight days were used and the corresponding annual energy consumptions were calculated using the proposed switching program for each tunnel. The results were compared with a number of scenarios in which the existing lighting system was retrofitted with Lighting Emitting Diodes (LED) luminaires. In these scenarios, the new luminaire arrangement was based not only on the existing luminance demand value for the threshold zone, but also on the newly proposed one with two different control techniques (continuous dimming and 10% step dimming). The fine-tuning method for switching resulted in energy savings between 11% and 54% depending on the tunnel when the scenario of the existing installation at no extra cost was used. Energy savings, when LED luminaires were installed, varied between 57% (for the scenario with existing luminance demand value for the threshold zone and 10% step dimming) and 85% (for the scenario with the new calculated luminance demand and continuous dimming).


2019 ◽  
Vol 1343 ◽  
pp. 012155
Author(s):  
Moe Soheilian ◽  
Nima Hafezparast Moadab ◽  
Geza Fischl ◽  
Myriam B C Aries

2021 ◽  
Author(s):  
M.R. Amjath ◽  
◽  
H. Chandanie ◽  
S.D.I.A. Amarasinghe ◽  
◽  
...  

It has been observed that inefficient buildings consume three to five times more energy than efficient buildings. Subsequently, improving the Energy Efficiency (EE) of existing buildings, which account for a significant portion of the energy consumption of the building sector, has become a top priority. Also, Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems typically account for three-quarters of a building's energy consumption. Hence, focus on the energy efficiency improvements associated with these subsystems is entailed to optimise the energy use of buildings in comparison to other energy consumers. Energy Retrofit (ER) is defined as the main approach in improving the energy efficiency of buildings to achieve energy reduction goals. Nevertheless, there is a general lack of awareness regarding ER. Thus, the purpose of this article is to bridge this research gap by critically reviewing the applicable literature on ER. The paper first analysed the role of retrofits in buildings concerning optimising energy performance. The paper also discusses the implementation process of ER, which includes five steps viz. pre-retrofit survey, energy auditing, and performance assessment, identification of suitable and feasible retrofit options, site implementation and commissioning, and validation and verification. Further, different types of ER applicable to HVAC and lighting systems are discussed. In their endeavor to enhance the EE of existing buildings, practitioners could apply the findings of this study, as a basis to understand the available ER types and as a measure to gauge the efficiency of existing buildings, which will facilitate effective decision-making.


2006 ◽  
Vol 17 (4) ◽  
pp. 33-38
Author(s):  
WLO Fritz ◽  
MTE Kahn

Energy management and the application of energy consumption reduction methods is high on the priority list of South Africa’s electrical supply utility, Eskom. One of Eskom’s Demand Side Management (DSM) recovery plan steps was the establishment of a subsidy programme for energy auditing and energy efficient lighting. A need arose to implement new lighting designs and to improve existing lighting systems. These improved lighting systems are used as recommendations in Energy Audits to achieve lighting efficiency and energy consumption reduction. It also highlights and promotes cost effective designs and energy management. New and better lighting methods are developed and researched to increase returns, domestically and in industry. This also highlights the importance of energy consumption reduction. This paper also discusses an Energy Audit conducted at a school in Worcester by the Service Learning and Development (SLD) unit of the Cape Peninsula University of Technology, Electrical Engineering Department in Bellville. The SLD delivers a service to the community, to improve their standard of living and to provide training to electrical engineering students. The aim of the project was to recommend energy consumption reduction methods.


2016 ◽  
Vol 114 ◽  
pp. 96-103 ◽  
Author(s):  
Federico Rossi ◽  
Emanuele Bonamente ◽  
Andrea Nicolini ◽  
Elisabetta Anderini ◽  
Franco Cotana

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2463 ◽  
Author(s):  
Herie Park

The residential building sector is encouraged to participate in demand response (DR) programs owing to its flexible and effective energy resources during peak hours with the help of a home energy management system (HEMS). Although the HEMS contributes to reducing energy consumption of the building and the participation of occupants in energy saving programs, unwanted interruptions and strict guidance from the system cause inconvenience to the occupants further leading to their limited participation in the DR programs. This paper presents a human comfort-based control approach for home energy management to promote the DR participation of households. Heating and lighting systems were chosen to be controlled by human comfort factors such as thermal comfort and visual comfort. Case studies were conducted to validate the proposed approach. The results showed that the proposed approach could effectively reduce the energy consumption during the DR period and improve the occupants’ comfort.


Sign in / Sign up

Export Citation Format

Share Document