Tropical Cyclogenesis Prediction in the North Indian Ocean During 2013 Using OSCAT Derived Surface Wind Observations

Author(s):  
N. Jaiswal ◽  
C. M. Kishtawal ◽  
P. K. Pal
MAUSAM ◽  
2021 ◽  
Vol 62 (1) ◽  
pp. 61-72
Author(s):  
O. P. SINGH ◽  
HARVIR SINGH

. Utilizing surface vorticity fields computed with the ocean surface wind speed and direction dataobtained from QuikSCAT, a study has been undertaken to investigate the increase in surface vorticity during the genesisphase of tropical cyclones over the north Indian Ocean. Six named tropical cyclones; Agni, Hibaru, Mala, Akash, Nargisand Phyan which formed over the region during 2004-2009 have been selected for this purpose. It has been found thatthere was a steep rise in scatterometer based surface vorticity before the formation of a cyclone in the cyclogenesisregion. The peak surface vorticity in the genesis region was observed on the day of intensification of the vortex to thedepression stage or a day earlier. However, the rising trend in the genesis region begins a few days before the formationof the system. Thus, the surface vorticity fields derived on the basis of scatterometer data can provide predictiveindication of the genesis of tropical cyclones over the Bay of Bengal and Arabian Sea with a lead time of 2-3 days. Usingthis technique it is possible to increase the lead time of pre-cyclone watch period over the north Indian Ocean. No relationship was found between the peak surface vorticity anomaly during the genesis phase and the surfacevorticity anomaly at the time of peak intensity of the system during its life cycle. In other words, the peak surfacevorticity anomaly during genesis phase does not provide any indication of future maximum intensity of the cyclone.


2005 ◽  
Vol 18 (12) ◽  
pp. 1942-1956 ◽  
Author(s):  
Motoki Nagura ◽  
Masanori Konda

Abstract The relationship between the interannual variation of the surface wind in the north Indian Ocean (0°–30°N, 30°–100°E) and El Niño–Southern Oscillation (ENSO) during boreal summer is investigated. The association of the surface wind with the sea surface temperature (SST) in the north Indian Ocean is evaluated. The NCEP–NCAR reanalysis, NOAA outgoing longwave radiation (OLR), and Reynolds SST data are used. The June–August mean of the surface wind anomaly over the north Indian Ocean is decomposed by EOF analysis, and two dominant modes are extracted. The first (second) mode shows the corresponding variation with the ENSO events maturing in the subsequent (previous) winter. The first mode has a large amplitude during the 1990s, while the amplitude of the second mode is large mainly during the 1980s. Such contrast of the amplitude of the two modes results in the temporal change of the surface wind–ENSO relationships between the two decades. The temporal characteristics of the first and second modes are consistent with those of convective variability in the eastern Indian Ocean and the Philippine Sea, respectively. The local thermal forcings associated with these two contrastive modes are compared with the time change of the SST anomaly. The thermal forcings are evaluated in terms of the latent heat flux and the Ekman heat transport. The thermal forcing of the first mode is consistent with a meridionally antisymmetric pattern of the SST anomaly during the 1990s, while that of the second mode is correlated with the basinwide SST anomaly during the 1980s. This result suggests that the temporal change is also found in the north Indian Ocean SST anomaly.


2021 ◽  
Vol 9 (4) ◽  
pp. 408
Author(s):  
Xi Chen ◽  
Mei Hong ◽  
Shiqi Wu ◽  
Kefeng Liu ◽  
Kefeng Mao

To study the optimal design of Wave Glider parameters in the wave environment of the Northwest Pacific Ocean, the North Indian Ocean, and the South China Sea, the average velocity of a Wave Glider was taken as the evaluation criterion. Wave reanalysis data from ERA5 were used to classify the mean wave height and period into five types by the K-means clustering method. In addition, a dynamic model was used to simulate the influence of umbilical length, airfoil, and maximum limited angle on the velocity of the Wave Glider under the five types of wave element. The force of the wings was simulated using FLUENT as the model input. The simulation results show that (1) 7 m is the most suitable umbilical length; (2) a smaller relative thickness should be selected in perfect conditions; and (3) for the first type of wave element, 15° is the best choice for the maximum limited angle, and 20° is preferred for the second, third, and fourth types, while 25° is preferred for the fifth type.


Sign in / Sign up

Export Citation Format

Share Document