Application of Problem Inversion to Cascading Critical Infrastructure Failure

Author(s):  
Ivan Taylor
Author(s):  
Edward J. Oughton

Space weather is a collective term for different solar or space phenomena that can detrimentally affect technology. However, current understanding of space weather hazards is still relatively embryonic in comparison to terrestrial natural hazards such as hurricanes, earthquakes, or tsunamis. Indeed, certain types of space weather such as large Coronal Mass Ejections (CMEs) are an archetypal example of a low-probability, high-severity hazard. Few major events, short time-series data, and the lack of consensus regarding the potential impacts on critical infrastructure have hampered the economic impact assessment of space weather. Yet, space weather has the potential to disrupt a wide range of Critical National Infrastructure (CNI) systems including electricity transmission, satellite communications and positioning, aviation, and rail transportation. In the early 21st century, there has been growing interest in these potential economic and societal impacts. Estimates range from millions of dollars of equipment damage from the Quebec 1989 event, to some analysts asserting that losses will be in the billions of dollars in the wider economy from potential future disaster scenarios. Hence, the origin and development of the socioeconomic evaluation of space weather is tracked, from 1989 to 2017, and future research directions for the field are articulated. Since 1989, many economic analyzes of space weather hazards have often completely overlooked the physical impacts on infrastructure assets and the topology of different infrastructure networks. Moreover, too many studies have relied on qualitative assumptions about the vulnerability of CNI. By modeling both the vulnerability of critical infrastructure and the socioeconomic impacts of failure, the total potential impacts of space weather can be estimated, providing vital information for decision makers in government and industry. Efforts on this subject have historically been relatively piecemeal, which has led to little exploration of model sensitivities, particularly in relation to different assumption sets about infrastructure failure and restoration. Improvements may be expedited in this research area by open-sourcing model code, increasing the existing level of data sharing, and improving multidisciplinary research collaborations between scientists, engineers, and economists.


Author(s):  
Olaf Jonkeren ◽  
David Ward

There is a large body of work and effort been made in the modelling of critical infrastructures (CI’s) by academia, enterprises, stakeholders, operators, etc.; however, their endeavours have received mixed success so far. This can be traced back to several difficult and historical hurdles in CI modeling such as the chronic unavailability of reliable and recognised data, the specificity of the resulting model, and therefore, its application, the underlying mathematics, narrow-mindedness and lack of awareness of the consequences of infrastructure failure, the recognition and dissemination of the modelling methodology-knowledge, etc. Consequently, bridging theory and application and providing tools for analysing CI’s is key to ensuring that such modelling delivers the benefits voiced and satisfies the needs raised. This chapter sets out to tackle several of these issues.


2019 ◽  
Vol 9 (2) ◽  
pp. 29 ◽  
Author(s):  
David Rehak ◽  
Michal Radimsky ◽  
Martin Hromada ◽  
Zdenek Dvorak

Crisis management must provide data to allow for real-time decision-making. Accurate data is especially needed to minimize the risk of critical infrastructure failure. Research into the possible impacts of critical infrastructure failure is a part of developing a functional and secure infrastructure for each nation state. Road transport is one such sector that has a significant impact on its functions. When this fails, there may be a cascading spread of impacts on the energy, health, and other sectors. In this regard, this paper focuses on the dynamic modeling of the impacts of critical road infrastructure failures. It proposes a dynamic modeling system based on a stochastic approach. Its essence is the macroscopic model-based comparative analysis of a road with a critical element and detour roads. The outputs of this system are planning documents that determine the impacts of functional parameter degradation on detour roads—not only applicable in decision-making concerning the selection of the optimal detour road, but also as a support mechanism in minimising possible risks. In this article we aim to expand the extent of knowledge in the Crisis management and critical infrastructure protection in the road transport sector fields.


2019 ◽  
Author(s):  
Shellie L. Habel ◽  
◽  
Tiffany Anderson ◽  
Charles H. Fletcher ◽  
Philip R. Thompson

2018 ◽  
Vol 18 (4) ◽  
pp. 1233-1246 ◽  
Author(s):  
Matthias Garschagen ◽  
Simone Sandholz

Abstract. Increased attention has lately been given to the resilience of critical infrastructure in the context of natural hazards and disasters. The major focus therein is on the sensitivity of critical infrastructure technologies and their management contingencies. However, strikingly little attention has been given to assessing and mitigating social vulnerabilities towards the failure of critical infrastructure and to the development, design and implementation of minimum supply standards in situations of major infrastructure failure. Addressing this gap and contributing to a more integrative perspective on critical infrastructure resilience is the objective of this paper. It asks which role social vulnerability assessments and minimum supply considerations can, should and do – or do not – play for the management and governance of critical infrastructure failure. In its first part, the paper provides a structured review on achievements and remaining gaps in the management of critical infrastructure and the understanding of social vulnerabilities towards disaster-related infrastructure failures. Special attention is given to the current state of minimum supply concepts with a regional focus on policies in Germany and the EU. In its second part, the paper then responds to the identified gaps by developing a heuristic model on the linkages of critical infrastructure management, social vulnerability and minimum supply. This framework helps to inform a vision of a future research agenda, which is presented in the paper's third part. Overall, the analysis suggests that the assessment of socially differentiated vulnerabilities towards critical infrastructure failure needs to be undertaken more stringently to inform the scientifically and politically difficult debate about minimum supply standards and the shared responsibilities for securing them.


Sign in / Sign up

Export Citation Format

Share Document