Remote Sensing of Drought: Vegetation, Soil Moisture, and Data Assimilation

Author(s):  
Ali Ahmadalipour ◽  
Hamid Moradkhani ◽  
Hongxiang Yan ◽  
Mahkameh Zarekarizi
2020 ◽  
Vol 12 (24) ◽  
pp. 4018
Author(s):  
El houssaine Bouras ◽  
Lionel Jarlan ◽  
Salah Er-Raki ◽  
Clément Albergel ◽  
Bastien Richard ◽  
...  

In Morocco, cereal production shows high interannual variability due to uncertain rainfall and recurrent drought periods. Considering the socioeconomic importance of cereal for the country, there is a serious need to characterize the impact of drought on cereal yields. In this study, drought is assessed through (1) indices derived from remote sensing data (the vegetation condition index (VCI), temperature condition index (TCI), vegetation health ind ex (VHI), soil moisture condition index (SMCI) and soil water index for different soil layers (SWI)) and (2) key land surface variables (Land Area Index (LAI), soil moisture (SM) at different depths, soil evaporation and plant transpiration) from a Land Data Assimilation System (LDAS) over 2000–2017. A lagged correlation analysis was conducted to assess the relationships between the drought indices and cereal yield at monthly time scales. The VCI and LAI around the heading stage (March-April) are highly linked to yield for all provinces (R = 0.94 for the Khemisset province), while a high link for TCI occurs during the development stage in January-February (R = 0.83 for the Beni Mellal province). Interestingly, indices related to soil moisture in the superficial soil layer are correlated with yield earlier in the season around the emergence stage (December). The results demonstrate the clear added value of using an LDAS compared with using a remote sensing product alone, particularly concerning the soil moisture in the root-zone, considered a key variable for yield production, that is not directly observable from space. The time scale of integration is also discussed. By integrating the indices on the main phenological stages of wheat using a dynamic threshold approach instead of the monthly time scale, the correlation between indices and yield increased by up to 14%. In addition, the contributions of VCI and TCI to VHI were optimized by using yield anomalies as proxies for drought. This study opens perspectives for the development of drought early warning systems in Morocco and over North Africa, as well as for seasonal crop yield forecasting.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Khaki ◽  
H.-J. Hendricks Franssen ◽  
S. C. Han

Abstract Satellite remote sensing offers valuable tools to study Earth and hydrological processes and improve land surface models. This is essential to improve the quality of model predictions, which are affected by various factors such as erroneous input data, the uncertainty of model forcings, and parameter uncertainties. Abundant datasets from multi-mission satellite remote sensing during recent years have provided an opportunity to improve not only the model estimates but also model parameters through a parameter estimation process. This study utilises multiple datasets from satellite remote sensing including soil moisture from Soil Moisture and Ocean Salinity Mission and Advanced Microwave Scanning Radiometer Earth Observing System, terrestrial water storage from the Gravity Recovery And Climate Experiment, and leaf area index from Advanced Very-High-Resolution Radiometer to estimate model parameters. This is done using the recently proposed assimilation method, unsupervised weak constrained ensemble Kalman filter (UWCEnKF). UWCEnKF applies a dual scheme to separately update the state and parameters using two interactive EnKF filters followed by a water balance constraint enforcement. The performance of multivariate data assimilation is evaluated against various independent data over different time periods over two different basins including the Murray–Darling and Mississippi basins. Results indicate that simultaneous assimilation of multiple satellite products combined with parameter estimation strongly improves model predictions compared with single satellite products and/or state estimation alone. This improvement is achieved not only during the parameter estimation period ($$\sim $$ ∼  32% groundwater RMSE reduction and soil moisture correlation increase from $$\sim $$ ∼  0.66 to $$\sim $$ ∼  0.85) but also during the forecast period ($$\sim $$ ∼  14% groundwater RMSE reduction and soil moisture correlation increase from $$\sim $$ ∼  0.69 to $$\sim $$ ∼  0.78) due to the effective impacts of the approach on both state and parameters.


2011 ◽  
Vol 54 (9) ◽  
pp. 1430-1440 ◽  
Author(s):  
ChunXiang Shi ◽  
ZhengHui Xie ◽  
Hui Qian ◽  
MiaoLing Liang ◽  
XiaoChun Yang

Author(s):  
Weijing Chen ◽  
Chunlin Huang ◽  
Zong-Liang Yang ◽  
Ying Zhang

AbstractData assimilation provides a practical way to improve the accuracy of soil moisture simulation by integrating a land surface model and satellite data. This study establishes a multi-source remote sensing data assimilation framework by incorporating a simultaneous state and parameter estimation method to acquire an accurate estimation of the soil moisture over the Tibetan Plateau. The brightness temperature of the Advanced Microwave Scanning Radiometer 2 (AMSR2) is directly assimilated into the coupled system of the Common Land Model (CoLM) and a microwave radiative transfer model (RTM) to improve the soil moisture simulation. The Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature product and the Beijing Normal University (BNU) leaf area index product are employed to not only improve the estimation of temperature and vegetation variables from the CoLM, but also provide more accurate background information for the RTM during the brightness temperature assimilation. In situ measurements from the Naqu network are used to evaluate the results. The model simulation showed an obvious underestimation of soil moisture and overestimation of soil temperature, which was alleviated by the assimilation experiments, particularly in the shallow soil layers. The estimated parameters also showed advantages in the soil moisture simulation when compared with the default parameters. The assimilation experiment presents promising results in the combination of model and multi-source remote sensing data for estimating soil moisture over the complex mountainous region in Tibet.


1998 ◽  
Vol 34 (12) ◽  
pp. 3405-3420 ◽  
Author(s):  
Paul R. Houser ◽  
W. James Shuttleworth ◽  
James S. Famiglietti ◽  
Hoshin V. Gupta ◽  
Kamran H. Syed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document