Quantum Channel, and Information Quantity, and Their Mathematical Structure

Author(s):  
Masahito Hayashi
Author(s):  
Daniel E. Jones ◽  
Gabriele Riccardi ◽  
Cristian Antonelli ◽  
Michael Brodsky
Keyword(s):  

2021 ◽  
Vol 20 (5) ◽  
Author(s):  
Paweł J. Szabłowski

AbstractWe analyze the mathematical structure of the classical Grover’s algorithm and put it within the framework of linear algebra over the complex numbers. We also generalize it in the sense, that we are seeking not the one ‘chosen’ element (sometimes called a ‘solution’) of the dataset, but a set of m such ‘chosen’ elements (out of $$n>m)$$ n > m ) . Besides, we do not assume that the so-called initial superposition is uniform. We assume also that we have at our disposal an oracle that ‘marks,’ by a suitable phase change $$\varphi $$ φ , all these ‘chosen’ elements. In the first part of the paper, we construct a unique unitary operator that selects all ‘chosen’ elements in one step. The constructed operator is uniquely defined by the numbers $$\varphi $$ φ and $$\alpha $$ α which is a certain function of the coefficients of the initial superposition. Moreover, it is in the form of a composition of two so-called reflections. The result is purely theoretical since the phase change required to reach this heavily depends on $$\alpha $$ α . In the second part, we construct unitary operators having a form of composition of two or more reflections (generalizing the constructed operator) given the set of orthogonal versors. We find properties of these operations, in particular, their compositions. Further, by considering a fixed, ‘convenient’ phase change $$\varphi ,$$ φ , and by sequentially applying the so-constructed operator, we find the number of steps to find these ‘chosen’ elements with great probability. We apply this knowledge to study the generalizations of Grover’s algorithm ($$m=1,\phi =\pi $$ m = 1 , ϕ = π ), which are of the form, the found previously, unitary operators.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 983
Author(s):  
José J. Gil ◽  
Ignacio San José

Polarimetry is today a widely used and powerful tool for nondestructive analysis of the structural and morphological properties of a great variety of material samples, including aerosols and hydrosols, among many others. For each given scattering measurement configuration, absolute Mueller polarimeters provide the most complete polarimetric information, intricately encoded in the 16 parameters of the corresponding Mueller matrix. Thus, the determination of the mathematical structure of the polarimetric information contained in a Mueller matrix constitutes a topic of great interest. In this work, besides a structural decomposition that makes explicit the role played by the diattenuation-polarizance of a general depolarizing medium, a universal synthesizer of Muller matrices is developed. This is based on the concept of an enpolarizing ellipsoid, whose symmetry features are directly linked to the way in which the polarimetric information is organized.


Author(s):  
Philipp Junker ◽  
Daniel Balzani

AbstractWe present a novel approach to topology optimization based on thermodynamic extremal principles. This approach comprises three advantages: (1) it is valid for arbitrary hyperelastic material formulations while avoiding artificial procedures that were necessary in our previous approaches for topology optimization based on thermodynamic principles; (2) the important constraints of bounded relative density and total structure volume are fulfilled analytically which simplifies the numerical implementation significantly; (3) it possesses a mathematical structure that allows for a variety of numerical procedures to solve the problem of topology optimization without distinct optimization routines. We present a detailed model derivation including the chosen numerical discretization and show the validity of the approach by simulating two boundary value problems with large deformations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bartosz Regula ◽  
Ryuji Takagi

AbstractQuantum channels underlie the dynamics of quantum systems, but in many practical settings it is the channels themselves that require processing. We establish universal limitations on the processing of both quantum states and channels, expressed in the form of no-go theorems and quantitative bounds for the manipulation of general quantum channel resources under the most general transformation protocols. Focusing on the class of distillation tasks — which can be understood either as the purification of noisy channels into unitary ones, or the extraction of state-based resources from channels — we develop fundamental restrictions on the error incurred in such transformations, and comprehensive lower bounds for the overhead of any distillation protocol. In the asymptotic setting, our results yield broadly applicable bounds for rates of distillation. We demonstrate our results through applications to fault-tolerant quantum computation, where we obtain state-of-the-art lower bounds for the overhead cost of magic state distillation, as well as to quantum communication, where we recover a number of strong converse bounds for quantum channel capacity.


Sign in / Sign up

Export Citation Format

Share Document