Reinvestigation of the Electromagnetic Valve Train (EMVT) Technology via Multidomain Simulation

Author(s):  
Christian Trebehs ◽  
Doru Groza
2018 ◽  
Vol 129 ◽  
pp. 833-840 ◽  
Author(s):  
Maoyang Hu ◽  
Siqin Chang ◽  
Liang Liu ◽  
Yaxuan Xu ◽  
Jiangtao Xu

2004 ◽  
Author(s):  
Christoph Hartwig ◽  
Olaf Josef ◽  
Klaus Gebauer

2018 ◽  
Vol 202 ◽  
pp. 02003
Author(s):  
Maoyang Hu ◽  
Siqin Chang

Cylinder deactivation (CDA) is a fuel consumption reduction technology for gasoline engines. Skip fire is a new type of CDA because the load and the density of firing cylinder are in proportion to the torque demand. However, it is difficult to realize because valves need to be switched between valve deactivation and normal operation stroke by stroke. The Electromagnetic valve train (EMVT) provides a fully flexible control method to achieve skip fire. In the paper, a new skip fire strategy based on electromagnetic intake valve train (EMIV) is proposed. Then, the oxygen concentration of the exhaust pipe, energy losses, in-cylinder pressure of the skipped cycle and exhaust gas recirculation (EGR) rate of the firing cycle are studied by the 1D simulation in GT-Power. The results shows the majority of gas sucked into the skipped cylinder is exhaust gas by reasonable control of IVO and IVC, and the exhaust oxygen-rich can be avoided. Meanwhile, EGR rate of the firing cylinder and energy losses of the skipped cylinder are maintained at lower level. At the conditions of 1200 and 1600 rpm, fuel economy has been improved respectively 8.1%-16.6% and 6.4%-14.6% when the brake mean effective pressure (BMEP) ranges from 0.4MPa to 0.2MPa.


2019 ◽  
Vol 146 ◽  
pp. 768-774 ◽  
Author(s):  
Xinyu Fan ◽  
Siqin Chang ◽  
Jiayu Lu ◽  
Liang Liu ◽  
Shouguang Yao ◽  
...  

2018 ◽  
Vol 202 ◽  
pp. 02011
Author(s):  
Yaxuan Xu ◽  
Siqin Chang

For the multi cylinder gasoline engine, the consistency of each cylinder is an important index to affect the emission and the power. In this paper, in order to reduce the air-fuel ratio (A/F) maldistribution of the engine based on the electromagnetic valve train (EMVT), an individual cylinder A/F estimation algorithm is proposed for the individual cylinder A/F control. Based on the analysis of the hybrid and transfer models of the exhaust of each cylinder in steady state, an individual A/F observer is established by using Kalman filter algorithm. Then the unknown parameters in the observer are identified by the differential evolution(DE) algorithm. Only a single wide area exhaust oxygen(UEGO) sensor is needed to identify the unknown parameters and estimate the A/F of each cylinder. The combined simulation of GT-Power and Simulink validates the effectiveness of the proposed estimation approach. The results show that the proposed method can provide good estimation results under steady-state condition.


2016 ◽  
Vol 17 (3) ◽  
pp. 361-367 ◽  
Author(s):  
X. Y. Fan ◽  
L. Liu ◽  
S. Q. Chang ◽  
J. T. Xu ◽  
J. G. Dai

Author(s):  
Rudolf Seethaler ◽  
Konrad Duerr

Electromagnetic valve actuation systems for automotive combustion engines must provide extremely fast valve motion when the engine speed is high, but they also need to ensure low valve seating velocities during engine idle. These two constraints are difficult to combine in conventional spring assisted electromagnetic valve actuation devices that operate at a fixed resonance frequency. This paper focuses on a mechanism with two distinct configurations for low and high speed engine operations respectively. The mechanism is based on two pivoting cams. The synthesis of the cam profile ultimately determines the performance of the actuation system. An algorithm is presented that provides a time optimum cam profile for the high speed cam. The low speed cam is designed to allow for servo control of the valve system. A control scheme that aims to minimize electric losses in the drive system is also introduced. Both the cam synthesis algorithms and the control algorithm are applied to a typical automotive valve train and a digital simulation is used to validate the effectiveness of the mechanical cam design and control scheme.


2004 ◽  
Author(s):  
Yasuhiro Urata ◽  
Moriyoshi Awasaka ◽  
Junichi Takanashi ◽  
Takashi Kakinuma ◽  
Takazou Hakozaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document