Monitoring Applications and Evaluating Changes

Author(s):  
Antoun Koht ◽  
Tod B. Sloan ◽  
J. Richard Toleikis
Author(s):  
Cecilia Klauber ◽  
Komal S. Shetye ◽  
Zeyu Mao ◽  
Thomas J. Overbye ◽  
Jennifer Gannon ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1936
Author(s):  
Tsun-Kuang Chi ◽  
Hsiao-Chi Chen ◽  
Shih-Lun Chen ◽  
Patricia Angela R. Abu

In this paper, a novel self-optimizing water level monitoring methodology is proposed for smart city applications. Considering system maintenance, the efficiency of power consumption and accuracy will be important for Internet of Things (IoT) devices and systems. A multi-step measurement mechanism and power self-charging process are proposed in this study for improving the efficiency of a device for water level monitoring applications. The proposed methodology improved accuracy by 0.16–0.39% by moving the sensor to estimate the distance relative to different locations. Additional power is generated by executing a multi-step measurement while the power self-optimizing process used dynamically adjusts the settings to balance the current of charging and discharging. The battery level can efficiently go over 50% in a stable charging simulation. These methodologies were successfully implemented using an embedded control device, an ultrasonic sensor module, a LORA transmission module, and a stepper motor. According to the experimental results, the proposed multi-step methodology has the benefits of high accuracy and efficient power consumption for water level monitoring applications.


Nano Energy ◽  
2021 ◽  
pp. 106140
Author(s):  
Guosheng Hu ◽  
Zhiran Yi ◽  
Lijun Lu ◽  
Yang Huang ◽  
Yueqi Zhai ◽  
...  

Author(s):  
Bao Chi Ha ◽  
Kevin Gilbert ◽  
Gang Wang

Because of their electro-mechanical coupling property, Lead-Zirconate-Titanate (PZT) materials have been widely used for ultrasonic wave sensing and actuation in structural health monitoring applications. In this paper, a PZT rosette concept is proposed to conduct Lamb wave-based damage detection in panel-like structures by exploring its best directional sensing capability. First, a directivity study was conducted to investigate sensing of flexural Lamb wave propagation using a PZT fiber having d33 effects. Then, commercial off-the-shelf PZT fibers were polarized in-house in order to construct the PZT rosette configuration, in which three PZT fibers are oriented at 0°, 45°, 90°, respectively. Since Lamb wave responses are directly related to measured PZT fiber voltage signals, a simple interrogation scheme was developed to calculate principal strain direction in order to locate an acoustic source. Comprehensive tests were conducted to evaluate the performance of the proposed PZT rosette using an aluminum plate. It is shown that the PZT rosette is able to sense Lamb wave responses and accurately locate an acoustic source. We expect to further evaluate the PZT rosette performance when damages are introduced.


Sign in / Sign up

Export Citation Format

Share Document