ADL-MOOC: Adaptive Learning Through Big Data Analytics and Data Mining Algorithms for MOOCs

Author(s):  
Juan Miguel Gómez-Berbís ◽  
Ángel Lagares-Lemos
Author(s):  
Muhammad D. Abdulrahman ◽  
Nachiappan Subramanian ◽  
Hing Kai Chan ◽  
Kun Ning

This chapter discusses the scholarly views on big data analytics with respect to the challenges in terms of visualization and data driven research in smart cities and ports. The prominent challenges and emerging research on structuring data, data mining algorithms and visualization aspects are shared by academic experts based on their ongoing research experience. Scholars agreed that being able to analyze huge data at once is highly critical for the embracement and success of big data research and the utilization of its findings particularly for entities with highly dynamic and complex demands such as cities and ports. It was noted that developing robust ways of handling and clean qualitative social media data as well as getting well-trained and highly skilled human resources in all aspects of big data analysis and interpretation remains a major challenge.


Author(s):  
Loubna Rabhi ◽  
Noureddine Falih ◽  
Lekbir Afraites ◽  
Belaid Bouikhalene

Due to the spead of objects connected to the internet and objects connected to each other, agriculture nowadays knows a huge volume of data exchanged called big data. Therefore, this paper discusses connected agriculture or agriculture 4.0 instead of a traditional one. As irrigation is one of the foremost challenges in agriculture, it is also moved from manual watering towards smart watering based on big data analytics where the farmer can water crops regularly and without wastage even remotely. The method used in this paper combines big data, remote sensing and data mining algorithms (neural network and support vector machine). In this paper, we are interfacing the databricks platform based on the apache Spark tool for using machine learning to predict the soil drought based on detecting the soil moisture and temperature.


2019 ◽  
Author(s):  
Meghana Bastwadkar ◽  
Carolyn McGregor ◽  
S Balaji

BACKGROUND This paper presents a systematic literature review of existing remote health monitoring systems with special reference to neonatal intensive care (NICU). Articles on NICU clinical decision support systems (CDSSs) which used cloud computing and big data analytics were surveyed. OBJECTIVE The aim of this study is to review technologies used to provide NICU CDSS. The literature review highlights the gaps within frameworks providing HAaaS paradigm for big data analytics METHODS Literature searches were performed in Google Scholar, IEEE Digital Library, JMIR Medical Informatics, JMIR Human Factors and JMIR mHealth and only English articles published on and after 2015 were included. The overall search strategy was to retrieve articles that included terms that were related to “health analytics” and “as a service” or “internet of things” / ”IoT” and “neonatal intensive care unit” / ”NICU”. Title and abstracts were reviewed to assess relevance. RESULTS In total, 17 full papers met all criteria and were selected for full review. Results showed that in most cases bedside medical devices like pulse oximeters have been used as the sensor device. Results revealed a great diversity in data acquisition techniques used however in most cases the same physiological data (heart rate, respiratory rate, blood pressure, blood oxygen saturation) was acquired. Results obtained have shown that in most cases data analytics involved data mining classification techniques, fuzzy logic-NICU decision support systems (DSS) etc where as big data analytics involving Artemis cloud data analysis have used CRISP-TDM and STDM temporal data mining technique to support clinical research studies. In most scenarios both real-time and retrospective analytics have been performed. Results reveal that most of the research study has been performed within small and medium sized urban hospitals so there is wide scope for research within rural and remote hospitals with NICU set ups. Results have shown creating a HAaaS approach where data acquisition and data analytics are not tightly coupled remains an open research area. Reviewed articles have described architecture and base technologies for neonatal health monitoring with an IoT approach. CONCLUSIONS The current work supports implementation of the expanded Artemis cloud as a commercial offering to healthcare facilities in Canada and worldwide to provide cloud computing services to critical care. However, no work till date has been completed for low resource setting environment within healthcare facilities in India which results in scope for research. It is observed that all the big data analytics frameworks which have been reviewed in this study have tight coupling of components within the framework, so there is a need for a framework with functional decoupling of components.


2022 ◽  
pp. 1477-1503
Author(s):  
Ali Al Mazari

HIV/AIDS big data analytics evolved as a potential initiative enabling the connection between three major scientific disciplines: (1) the HIV biology emergence and evolution; (2) the clinical and medical complex problems and practices associated with the infections and diseases; and (3) the computational methods for the mining of HIV/AIDS biological, medical, and clinical big data. This chapter provides a review on the computational and data mining perspectives on HIV/AIDS in big data era. The chapter focuses on the research opportunities in this domain, identifies the challenges facing the development of big data analytics in HIV/AIDS domain, and then highlights the future research directions of big data in the healthcare sector.


2018 ◽  
Vol 2 (2) ◽  
pp. 164-176
Author(s):  
Zhiwen Pan ◽  
Wen Ji ◽  
Yiqiang Chen ◽  
Lianjun Dai ◽  
Jun Zhang

Purpose The disability datasets are the datasets that contain the information of disabled populations. By analyzing these datasets, professionals who work with disabled populations can have a better understanding of the inherent characteristics of the disabled populations, so that working plans and policies, which can effectively help the disabled populations, can be made accordingly. Design/methodology/approach In this paper, the authors proposed a big data management and analytic approach for disability datasets. Findings By using a set of data mining algorithms, the proposed approach can provide the following services. The data management scheme in the approach can improve the quality of disability data by estimating miss attribute values and detecting anomaly and low-quality data instances. The data mining scheme in the approach can explore useful patterns which reflect the correlation, association and interactional between the disability data attributes. Experiments based on real-world dataset are conducted at the end to prove the effectiveness of the approach. Originality/value The proposed approach can enable data-driven decision-making for professionals who work with disabled populations.


Sign in / Sign up

Export Citation Format

Share Document