Influence of Chemical Composition and Process Parameters on Mechanical Properties and Formability of AlMgSi-Sheets for Automotive Application

2014 ◽  
pp. 227-232
Author(s):  
R. Prillhofer ◽  
J. Berneder ◽  
G. Rank ◽  
H. Antrekowitsch ◽  
S. Pogatscher ◽  
...  
2021 ◽  
Author(s):  
EVREN YASA ◽  
İlker Atik ◽  
İpek Kandemir

Abstract Although Selective Laser Melting has become attractive in industrial applications seeking a high geometrical complexity with short lead times and customization, some bottlenecks still exist for wider adoption. Build rate is one of them while the high number of process parameters and their interactions easily exceeding hundreds which affects the part performance is the second. The machine manufacturers supply parameter sets generally optimized for maximum density leading to good mechanical properties. However, other factors need to be considered in process development. This study aims at increasing the build rate of at least 2 times for 17-4 PH stainless steel without any significant effect on the density, surface quality, material composition, mechanical properties and residual stresses. The results show an excessive ultimate tensile strength to yield strength ratio in comparison to reported literature which is attributed to the double yield phenomenon mainly attributed to the phases present in the microstructure as a result of powder chemical composition and processing gas. Thus, it is concluded that powder chemical composition and processing gas are much more effective on the outcome while the process parameters with an increased build rate do not significantly change the results provided that almost full density is reached.


2016 ◽  
Vol 870 ◽  
pp. 584-592
Author(s):  
V.M. Salganik ◽  
D.N. Chikishev ◽  
E.B. Pozhidaeva

A mathematical model for calculation of rolling pipe mechanical properties has been developed. The influence of alloying elements in steel by means of optimal process parameters of thermomechanical rolling was analyzed. There are two methods of mathematical modeling used in the study: the neural network modeling used to select the optimal chemical composition and the finite element analysis used to optimize the process parameters. Due to large availability, low cost and high accuracy of the results, these methods are considered to be the most promising ones. Two ways to reduce the cost of a hot-rolled plate from microalloyed steels have been developed. A complex of technological processing replacement was developed.


2019 ◽  
Vol 85 (12) ◽  
pp. 43-50
Author(s):  
D. A. Movenko ◽  
L. V. Morozova ◽  
S. V. Shurtakov

The results of studying operational destruction of a high-loaded cardan shaft of the propeller engine made of steel 38KhN3MFA are presented to elucidate the cause of damage and develop a set of recommendations and measures aimed at elimination of adverse factors. Methods of scanning electron and optical microscopy, as well as X-ray spectral microanalysis are used to determine the mechanical properties, chemical composition, microstructure, and fracture pattern of cardan shaft fragments. It is shown that the mechanical properties and chemical composition of the material correspond to the requirements of the regulatory documentation, defects of metallurgical origin both in the shaft metal and in the fractures are absent. The microstructure of the studied shaft fragments is tempered martensite. Fractographic analysis revealed that the destruction of cardan shaft occurred by a static mechanism. The fracture surface is coated with corrosion products. The revealed cracks developed by the mechanism of corrosion cracking due to violation of the protective coating on the shaft. The results of the study showed that the destruction of the cardan shaft of a propeller engine made of steel 38Kh3MFA occurred due to formation and development of spiral cracks by the mechanism of stress corrosion cracking under loads below the yield point of steel. The reason for «neck» formation upon destruction of the shaft fragment is attributed to the yield point of steel attained during operation. Regular preventive inspections are recommended to assess the safety of the protective coating on the shaft surface to exclude formation and development of corrosion cracks.


2020 ◽  
pp. 5-18
Author(s):  
D. V. Prosvirnin ◽  
◽  
M. S. Larionov ◽  
S. V. Pivovarchik ◽  
A. G. Kolmakov ◽  
...  

A review of the literature data on the structural features of TRIP / TWIP steels, their relationship with mechanical properties and the relationship of strength parameters under static and cyclic loading was carried out. It is shown that the level of mechanical properties of such steels is determined by the chemical composition and processing technology (thermal and thermomechanical processing, hot and cold pressure treatment), aimed at achieving a favorable phase composition. At the atomic level, the most important factor is stacking fault energy, the level of which will be decisive in the formation of austenite twins and / or the formation of strain martensite. By selecting the chemical composition, it is possible to set the stacking fault energy corresponding to the necessary mechanical characteristics. In the case of cyclic loads, an important role is played by the strain rate and the maximum load during testing. So at high loading rates and a load approaching the yield strength under tension, the intensity of the twinning processes and the formation of martensite increases. It is shown that one of the relevant ways to further increase of the structural and functional properties of TRIP and TWIP steels is the creation of composite materials on their basis. At present, surface modification and coating, especially by ion-vacuum methods, can be considered the most promising direction for the creation of such composites.


2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


Sign in / Sign up

Export Citation Format

Share Document