Influence of Steel Chemical Composition and Modes of the Thermomechanical Treatment on Mechanical Properties of a Hot Rolled Plate

2016 ◽  
Vol 870 ◽  
pp. 584-592
Author(s):  
V.M. Salganik ◽  
D.N. Chikishev ◽  
E.B. Pozhidaeva

A mathematical model for calculation of rolling pipe mechanical properties has been developed. The influence of alloying elements in steel by means of optimal process parameters of thermomechanical rolling was analyzed. There are two methods of mathematical modeling used in the study: the neural network modeling used to select the optimal chemical composition and the finite element analysis used to optimize the process parameters. Due to large availability, low cost and high accuracy of the results, these methods are considered to be the most promising ones. Two ways to reduce the cost of a hot-rolled plate from microalloyed steels have been developed. A complex of technological processing replacement was developed.

2021 ◽  
Vol 1026 ◽  
pp. 65-73
Author(s):  
Kai Zhu ◽  
Hong Wei Yan

Both microstructure inhomogeneity and mechanical property diversity along the thickness direction in rolled thick aluminum plates have been considered to have a remarkable impact on the performance and properties of the products made from the plates. In this study, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) characterizations of microstructure and texture types along the thickness directions of Al7055 thick plate specimens prepared using two conditions, hot-rolling and solution-quenching, were performed. To examine the mechanical properties, uniaxial tensile tests were also carried out on specimens machined from both types of thick plates, using a layered strategy along the thickness direction. The results indicate that both the microstructure and mechanical properties are inhomogeneous under the two conditions. Furthermore, it is evident that there is a hereditary relationship between the mechanical properties of the two plates—areas with higher yield strength in the as-hot-rolled plate correspond to areas with the higher yield strength in the as-solution-quenched plate


2010 ◽  
Vol 654-656 ◽  
pp. 82-85 ◽  
Author(s):  
Shu Zhou ◽  
Ying Wang ◽  
Nai Lu Chen ◽  
Yong Hua Rong ◽  
Jian Feng Gu

The quenching-partitioning-tempering (Q-P-T) process, based on the quenching and partitioning (Q&P) treatment, has been proposed for producing high strength steels containing significant fraction of film-like retained austenite and controlled amount of fine martensite laths. In this study, a set of Q-P-T processes for C-Mn-Si-Ni-Nb hot rolled plates are designed and realized. The steels with Q-P-T processes present a combination of high strength and relatively good ductility. The origin of such mechanical properties is revealed by microstructure characterization.


2005 ◽  
Vol 500-501 ◽  
pp. 279-286
Author(s):  
Carlo Mapelli ◽  
Roberto Venturini ◽  
Antonio Guindani

The effects of Nb and V on the anisotropy and textures featuring the hot rolled low carbon microalloyed steels produced by A.S.T. (Arvedi Steel Technology) have been studied as a function of the final coiling temperatute Tcoiling. Mechanical properties and r-values for twelve steels have been determined through tensile tests performed on three main different directions: 0°, 45°, 90° to the rolling one. The samples have been analysed by EBSD (Electron Back Scattering Diffraction) to identify the textures developed during the process. The relations among the chemical composition of the steels (i.e. C, N, Nb, V contents), the mechanical properties, the temperature during the coiling operations, the textures and the formability properties have been pointed out.


2018 ◽  
Vol 770 ◽  
pp. 248-254
Author(s):  
Leandro Bolzoni ◽  
Elisa Maria Ruiz-Navas ◽  
Elena Gordo

Cheap alloying elements and creative processing techniques are a way forward to open up more industrial opportunities for Ti in sectors where it is not extensively applied yet, rather than in aerospace and biomedical applications. This study focuses on understanding the joint effect of using a commercial steel powder to add Fe to pure Ti and its processing by press-and-sinter on the behaviour of low-cost PM Ti alloys. It is found that the calibrated addition of steel permits to develop new low-cost Fe-bearing Ti alloys that can satisfactorily be produced using the blending elemental PM approach. Densification of the samples and homogenization of the chemical composition are enhanced by the high diffusivity of Fe. The low-cost α+β alloys reach comparable physical and mechanical properties to those of wrought-equivalent PM Ti alloys, such as Ti-6Al-4V, and are therefore promising candidates for load-bearing lightweight products.


Sign in / Sign up

Export Citation Format

Share Document