An Optimized Probabilistic Routing Protocol Based on Scheduling Mechanism for Delay Tolerant Network

Author(s):  
Yuxin Mao ◽  
Chenqian Zhou ◽  
Jaime Lloret
2013 ◽  
Vol 684 ◽  
pp. 543-546 ◽  
Author(s):  
Phearin Sok ◽  
Sueng Hwan Lee ◽  
Kee Cheon Kim

PRoPHET uses its delivery predictability of node encounters and transitivity to forward bundles to its neighbor node. Regardless of their distance, it faces delivery dilemmas in a source node and drawbacks of low delivery ratio and high delay in case two or more neighbor nodes carry equal delivery predictability. To solve such consequences, we propose a Distance and Probabilistic Routing Protocol using History of Encounters and Transitivity (DPRoPHET) with the use of cross layer implementation for distance value retrieval. Our simulation results show that, by adding distance metric to the existing delivery predictability vector, DPRoPHET outperforms PRoPHET.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771738 ◽  
Author(s):  
Min Wook Kang ◽  
Yun Won Chung

In delay-tolerant wireless sensor networks, messages for sensor data are delivered using opportunistic contacts between intermittently connected nodes. Since there is no stable end-to-end routing path like the Internet and mobile nodes operate on battery, an energy-efficient routing protocol is needed. In this article, we consider the probabilistic routing protocol using history of encounters and transitivity protocol as the base protocol. Then, we propose an energy-aware routing protocol in intermittently connected delay-tolerant wireless sensor networks, where messages are forwarded based on the node’s remaining battery, delivery predictability, and type of nodes. The performance of the proposed protocol is compared with that of probabilistic routing protocol using history of encounters and transitivity and probabilistic routing protocol using history of encounters and transitivity with periodic sleep in detail, from the aspects of delivery ratio, overhead ratio, delivery latency, and ratio of alive nodes. Simulation results show that the proposed protocol has better delivery probability, overhead ratio, and ratio of alive nodes, in most of the considered parameter settings, in spite of a small increase in delivery latency.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 243 ◽  
Author(s):  
Yuxin Mao ◽  
Chenqian Zhou ◽  
Yun Ling ◽  
Jaime Lloret

Many applications of Internet of Things (IoT) have been implemented based on unreliable wireless or mobile networks like the delay tolerant network (DTN). Therefore, it is an important issue for IoT applications to achieve efficient data transmission in DTN. In order to improve delivery rate and optimize delivery delay with low overhead in DTN for IoT applications, we propose a new routing protocol, called Scheduling-Probabilistic Routing Protocol using History of Encounters and Transitivity (PROPHET). In this protocol, we calculate the delivery predictability according to the encountering frequency among nodes. Two scheduling mechanisms are proposed to extend the traditional PROPHET protocol and improve performance in both storage and transmission in DTN. In order to evaluate the proposed routing protocol, we perform simulations and compare it with other routing protocols in an Opportunistic Network Environment (ONE) simulator. The results demonstrate that the proposed Scheduling-PROPHET can achieve better performances in several key aspects compared with the existing protocols.


2014 ◽  
Vol 13 (2) ◽  
pp. 4237-4247 ◽  
Author(s):  
Pravesh S Patel ◽  
Hemal Shah ◽  
Yogeshwar Kosta

In Delay tolerant network having intermittent connectivity so there is no guarantee of finding a complete communication path that connecting the source and destination. There no any end to end connectivity for delay-tolerant network selection of routing protocol is important to deliver the message in an efficient way and increases chance to deliver a message to the destination. Some existing routing protocols improve the delivery ratio but it also increases the overhead. Our paper proposed Contact History Based Routing (CHBR) that use Neighborhood Index and Time varying properties such as temporal distance, Temporal Diameter and centrality for benchmarking the existing routing protocol. First, temporal metrics are evaluated for synthetic and real trace data. Then CHBR protocol is compared with the Epidemic and PROPHET for delivery ratio, overhead and the number of messages dropped. This has been carried using Opportunistic Network Environment simulator under real and synthetic datasets.


Sign in / Sign up

Export Citation Format

Share Document