Graph-Based Model for Context-Aware Maintenance Assistance with Augmented Reality and 3D Visualization

Author(s):  
Michael Abramovici ◽  
Mario Wolf ◽  
Matthias Neges
Author(s):  
VanDung Nguyen ◽  
Tran Trong Khanh ◽  
Tri D. T. Nguyen ◽  
Choong Seon Hong ◽  
Eui-Nam Huh

AbstractIn the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.


2021 ◽  
Vol 5 (1) ◽  
pp. 17-28
Author(s):  
Ravi Wiyantoko ◽  
Ahmad Hamim Thohari ◽  
Muhammad Dzuhri Maarief

The process of extracting oil and gas is carried out by drilling with a depth of more than 200 meters below the surface of the ground, so one steel pipe is needed to run the process. The manufacture of steel pipes for the opening process has special standards, one of which is a long pipe. To reach a depth of 200 meters below the ground level, a pipe connection is needed to reach that height. The method of connecting the pipes is called the Thread Connection Type. This method has more than 20 types of threads to be applied in pipe joints. To facilitate the discussion of the types of threads and their specifications, we need a technology that can be used interactive and mobile learning media to deliver detailed information on the type of thread. The author uses the use of Augmented Reality (AR) technology to be applied as an Android-based training media that can facilitate the existing Connection Thread along with special specifications with 3D visualization. This study aims to measure the validity and practicality of using ISO 25010 (in terms of functional suitability, performance efficiency, portability and usability) of learning media so that it is easier to understand and practical. The study consisted of two parts: 1) Validity by experts (5 experts), 2) Practicality by trainees or employees (16 participants) using the USE Questionnaire instrument. Furthermore, in application development using the Multimedia Development Life Cycle (MDLC) method as its development method. As a result, the application was declared feasible with the results of the percentage of experts Validity of 96% and Practicality by employees of 79%.


Author(s):  
Karina Ceniceros Trinidad ◽  
Diana Lizeth Pasillas Villa ◽  
Ivonne Haydee Robledo Portillo ◽  
Fernando Estrada Saldana

Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 209
Author(s):  
Plamen D. Petrov ◽  
Tatiana V. Atanasova

The effect of one of the most popular 3D visualization and modelling technologies with haptic and touch feedback possibilities—augmented reality (AR)—is analysed herein. That includes a specific solution, incorporating augmented reality. A case study for delivering STEM (science, technology, engineering, and mathematics) content using this tool at one secondary school in Sofia is presented. The experience gained in one school year of using facilities for a STEM enrichment program has been examined.


2017 ◽  
Vol 113 ◽  
pp. 400-407 ◽  
Author(s):  
Qian Shan ◽  
Thomas E. Doyle ◽  
Reza Samavi ◽  
Mona Al-Rei

Sign in / Sign up

Export Citation Format

Share Document