1H NMR Spectroscopy for Identification of Oxidation Products and for Elucidation of Reaction Mechanisms

Author(s):  
Hong-Sik Hwang
2020 ◽  
Vol 7 (4) ◽  
pp. 233-236
Author(s):  
A. D. Sharapov ◽  
R. F. Fatykhov ◽  
I. A. Khalymbadzha ◽  
O. N. Chupakhin

An electron-deficient series of 1,2,4-triazines and quinazoline have been used for cross-dehydrogenative coupling with 1,3-dihydroxy and 1,3-dimethoxyxanthones to give stable nucleophilic addition products. The adducts and their subsequent oxidation products were obtained in good yields and the structures of the compounds were confirmed by 1H NMR spectroscopy. These results expand the scope of the methodology of nucleophilic substitution of hydrogen with the participation of xanthones with azines. Moreover, this methodology makes it possible to obtain new organic materials based on xanthones, which have a wide spectrum of biological activity.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Maria Maganu ◽  
Filip Chiraleu ◽  
Constantin Draghici ◽  
Gheorghe Mihai

The previous data obtained by 1H-NMR spectroscopy established the existence of an asymmetry of the bond between Pd and p-allylic groups, even in the p-allyl-Pd complexes dimers which are considered usually symmetric dimers. The asymmetry of the bond depends by the substitutes of the allylic group. Other analytical methods were investigated for additional proof of the obtained results. Thus, this paper discusses how this asymmetry would be reflected in the infrared spectra and in the reaction of the complexes with carbon monoxide.


2020 ◽  
Vol 07 ◽  
Author(s):  
Christian Trapp ◽  
Corinna Schuster ◽  
Chris Drewniok ◽  
Dieter Greif ◽  
Martin Hofrichter

Background:: Chiral β-hydroxy esters and α-substituted β-hydroxy esters represent versatile building blocks for pheromones, β-lactam antibiotics and 1,2- or 1,3-aminoalcohols. Objective:: Synthesis of versatile α-substituted β-keto esters and their diastereoselective reduction to the corresponding syn- or anti-α-substituted β-hydroxy esters. Assignment of the relative configuration by NMR-spectroscopy after a CURTIUS rearrangement of α-substituted β-keto esters to 4-substituted 5-methyloxazolidin-2-ones. Method:: Diastereoselective reduction was achieved by using different LEWIS acids (zinc, titanium and cerium) in combination with complex borohydrides as reducing agents. Assignment of the relative configuration was verified by 1H-NMR spectroscopy after CURTIUS-rearrangement of α-substituted β-hydroxy esters to 4-substituted 5-methyloxazolidin-2-ones. Results:: For the syn-selective reduction, titanium tetrachloride (TiCl4) in combination with a pyridine-borane complex (py BH3) led to diastereoselectivities up to 99% dr. High anti-selective reduction was achieved by using cerium trichloride (CeCl3) and steric hindered reducing agents such as lithium triethylborohydride (LiEt3BH). After CURTIUS-rearrangement of each α-substituted β-hydroxy ester to the corresponding 4-substituted 5-methyloxazolidin-2-one, the relative configuration was confirmed by 1H NMR-spectroscopy. Conclusion:: We have expanded the procedure of LEWIS acid-mediated diastereoselective reduction to bulky α-substituents such as the isopropyl group and the electron withdrawing phenyl ring.


1985 ◽  
Vol 50 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Milena Masojídková ◽  
Jaroslav Zajíček ◽  
Miloš Buděšínský ◽  
Ivan Rosenberg ◽  
Antonín Holý

Conformational properties of ribonucleoside 5'-O-phosphonylmethyl derivatives have been determined by 1H NMR spectroscopy and compared with those of natural nucleosides and 5'-nucleotides.


Sign in / Sign up

Export Citation Format

Share Document