scholarly journals Distributed Random Process for a Large-Scale Peer-to-Peer Lottery

Author(s):  
Stéphane Grumbach ◽  
Robert Riemann
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 1051
Author(s):  
Gera Jaideep ◽  
Bhanu Prakash Battula

Peer to Peer (P2P) network in the real world is a class of systems that are made up of thousands of nodes in distributed environments. The nodes are decentralized in nature. P2P networks are widely used for sharing resources and information with ease. Gnutella is one of the well known examples for such network. Since these networks spread across the globe with large scale deployment of nodes, adversaries use them as a vehicle to launch DDoS attacks. P2P networks are exploited to make attacks over hosts that provide critical services to large number of clients across the globe. As the attacker does not make a direct attack it is hard to detect such attacks and considered to be high risk threat to Internet based applications. Many techniques came into existence to defeat such attacks. Still, it is an open problem to be addressed as the flooding-based DDoS is difficult to handle as huge number of nodes are compromised to make attack and source address spoofing is employed. In this paper, we proposed a framework to identify and secure P2P communications from a DDoS attacks in distributed environment. Time-to-Live value and distance between source and victim are considered in the proposed framework. A special agent is used to handle information about nodes, their capacity, and bandwidth for efficient trace back. A Simulation study has been made using NS2 and the experimental results reveal the significance of the proposed framework in defending P2P network and target hosts from high risk DDoS attacks.  


2014 ◽  
Vol 26 (6) ◽  
pp. 1316-1331 ◽  
Author(s):  
Gang Chen ◽  
Tianlei Hu ◽  
Dawei Jiang ◽  
Peng Lu ◽  
Kian-Lee Tan ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243475
Author(s):  
David Mödinger ◽  
Jan-Hendrik Lorenz ◽  
Rens W. van der Heijden ◽  
Franz J. Hauck

The cryptocurrency system Bitcoin uses a peer-to-peer network to distribute new transactions to all participants. For risk estimation and usability aspects of Bitcoin applications, it is necessary to know the time required to disseminate a transaction within the network. Unfortunately, this time is not immediately obvious and hard to acquire. Measuring the dissemination latency requires many connections into the Bitcoin network, wasting network resources. Some third parties operate that way and publish large scale measurements. Relying on these measurements introduces a dependency and requires additional trust. This work describes how to unobtrusively acquire reliable estimates of the dissemination latencies for transactions without involving a third party. The dissemination latency is modelled with a lognormal distribution, and we estimate their parameters using a Bayesian model that can be updated dynamically. Our approach provides reliable estimates even when using only eight connections, the minimum connection number used by the default Bitcoin client. We provide an implementation of our approach as well as datasets for modelling and evaluation. Our approach, while slightly underestimating the latency distribution, is largely congruent with observed dissemination latencies.


2012 ◽  
Vol 19 (8) ◽  
pp. 2203-2217 ◽  
Author(s):  
Hai-zhou Wang ◽  
Xing-shu Chen ◽  
Wen-xian Wang ◽  
Zheng-hong Hao
Keyword(s):  

Author(s):  
Sadia Khalil ◽  
Rahat Masood ◽  
Muhammad Awais Shibli

Bitcoin is considered to be the world's first peer-to-peer and unregulated crypto-currency which has received widespread popularity in the last few years. It is issued and controlled by the members of the Bitcoin system. The success of Bitcoin has spurred the launch of many other crypto-currencies. Despite being widely adopted by various large-scale businesses, Bitcoin transactions are still exposed to many known as well as zero-day attacks due to various vulnerabilities being exploited by the malicious entities. In order to achieve reliable and secure transactions, extensive research needs to be carried out to critically examine Bitcoin architecture and its level of security. In this regard, this chapter presents a holistic analysis of Bitcoin architecture and a survey of the attacks prevalent to its transactions. As an evaluation of the Bitcoin system, a comparison of different crypto-currencies has been presented, based on their features, possible attacks, disadvantages, and the advantages which they possess over Bitcoin.


Author(s):  
Sadia Khalil ◽  
Rahat Masood ◽  
Muhammad Awais Shibli

Bitcoin is considered to be the world's first peer to peer and unregulated crypto-currency which has received widespread popularity in the last few years. It is issued and controlled by the members of the Bitcoin system. The success of Bitcoin has spurred the launch of many other crypto-currencies. Despite being widely adopted by various large scale businesses, Bitcoin transactions are still exposed to many known as well as zero-day attacks due to various vulnerabilities being exploited by the malicious entities. In order to achieve reliable and secure transactions, extensive research needs to be carried out to critically examine Bitcoin architecture and its level of security. In this regard, this chapter presents a holistic analysis of Bitcoin architecture and a survey of the attacks prevalent to its transactions. As an evaluation of the Bitcoin system, a comparison of different crypto-currencies has been presented, based on their features, possible attacks, disadvantages and the advantages which they possess over Bitcoin.


2012 ◽  
pp. 232-259
Author(s):  
Eddy Caron ◽  
Frédéric Desprez ◽  
Franck Petit ◽  
Cédric Tedeschi

Within distributed computing platforms, some computing abilities (or services) are offered to clients. To build dynamic applications using such services as basic blocks, a critical prerequisite is to discover those services. Traditional approaches to the service discovery problem have historically relied upon centralized solutions, unable to scale well in large unreliable platforms. In this chapter, we will first give an overview of the state of the art of service discovery solutions based on peer-to-peer (P2P) technologies that allow such a functionality to remain efficient at large scale. We then focus on one of these approaches: the Distributed Lexicographic Placement Table (DLPT) architecture, that provide particular mechanisms for load balancing and fault-tolerance. This solution centers around three key points. First, it calls upon an indexing system structured as a prefix tree, allowing multi-attribute range queries. Second, it allows the mapping of such structures onto heterogeneous and dynamic networks and proposes some load balancing heuristics for it. Third, as our target platform is dynamic and unreliable, we describe its powerful fault-tolerance mechanisms, based on self-stabilization. Finally, we present the software prototype of this architecture and its early experiments.


Sign in / Sign up

Export Citation Format

Share Document