Sensor and Control Concept for a Wearable Robot for Manual Load Handling Assistance

Author(s):  
P. Stelzer ◽  
B. Otten ◽  
W. Kraus ◽  
A. Pott
Author(s):  
Ran Duan ◽  
Shuangyue Yu ◽  
Guang Yue ◽  
Richard Foulds ◽  
Chen Feng ◽  
...  

Wearable environment perception system has the great potential for improving the autonomous control of mobility aids [1]. A visual perception system could provide abundant information of surroundings to assist the task-oriented control such as navigation, obstacle avoidance, object detection, etc., which are essential functions for the wearers who are visually impaired or blind [2, 3, 4]. Moreover, a vision-based terrain sensing is a critical input to the decision-making for the intelligent control system. Especially for the users who find difficulties in manually achieving a seamless control model transition.


1996 ◽  
Vol 118 (1) ◽  
pp. 10-19 ◽  
Author(s):  
R. J. Furness ◽  
A. Galip Ulsoy ◽  
C. L. Wu

A supervisory process control approach to machining is presented in this paper, and demonstrated by application to a drilling operation. The supervisory process control concept incorporates optimization and control functions in a hierarchical structure. This approach utilizes feedback measurements to parameterize the constraints of a process optimization problem whose solution determines both strategies and references for process control. For this particular drilling operation, a three-phase strategy (utilizing a combination of feed, speed, and torque control) evolved due to inherent variation in constraint activity as a function of hole depth. A controller comparison study was conducted which demonstrates the advantages of this approach compared to (1) uncontrolled “conventional” drilling, (2) feed and speed controlled drilling, and (3) torque and speed controlled drilling. Benefits of reduced machining time, improved hole quality, and the elimination of tool breakage are demonstrated, and the potential economic impact is highlighted for an example production application.


2006 ◽  
Author(s):  
Adam R. Contos ◽  
D. Scott Acton ◽  
Paul D. Atcheson ◽  
Allison A. Barto ◽  
Paul A. Lightsey ◽  
...  

2017 ◽  
Vol 14 (2) ◽  
pp. 172988141668713 ◽  
Author(s):  
Yasmin Ansari ◽  
Mariangela Manti ◽  
Egidio Falotico ◽  
Yoan Mollard ◽  
Matteo Cianchetti ◽  
...  

Manipulators based on soft robotic technologies exhibit compliance and dexterity which ensures safe human–robot interaction. This article is a novel attempt at exploiting these desirable properties to develop a manipulator for an assistive application, in particular, a shower arm to assist the elderly in the bathing task. The overall vision for the soft manipulator is to concatenate three modules in a serial manner such that (i) the proximal segment is made up of cable-based actuation to compensate for gravitational effects and (ii) the central and distal segments are made up of hybrid actuation to autonomously reach delicate body parts to perform the main tasks related to bathing. The role of the latter modules is crucial to the application of the system in the bathing task; however, it is a nontrivial challenge to develop a robust and controllable hybrid actuated system with advanced manipulation capabilities and hence, the focus of this article. We first introduce our design and experimentally characterize its functionalities, which include elongation, shortening, omnidirectional bending. Next, we propose a control concept capable of solving the inverse kinetics problem using multiagent reinforcement learning to exploit these functionalities despite high dimensionality and redundancy. We demonstrate the effectiveness of the design and control of this module by demonstrating an open-loop task space control where it successfully moves through an asymmetric 3-D trajectory sampled at 12 points with an average reaching accuracy of 0.79 cm ± 0.18 cm. Our quantitative experimental results present a promising step toward the development of the soft manipulator eventually contributing to the advancement of soft robotics.


Sign in / Sign up

Export Citation Format

Share Document