scholarly journals Research of Interaction Between Applications of Augmented Reality and Control Methods of UAVs

Author(s):  
Maria Makolkina ◽  
Ruslan Kirichek ◽  
Valeria Teltevskaya ◽  
Elisaveta Surodeeva
2021 ◽  
Vol 226 ◽  
pp. 108826
Author(s):  
Chenguang Liu ◽  
Junlin Qi ◽  
Xiumin Chu ◽  
Mao Zheng ◽  
Wei He

2021 ◽  
Vol 787 (1) ◽  
pp. 012027
Author(s):  
Yudian Li ◽  
Jiajie Dong ◽  
Kai Fei ◽  
Hao Song ◽  
Zeyi Li ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2315
Author(s):  
Yu-Cheng Lo ◽  
Guan-An Chen ◽  
Yin Chun Liu ◽  
Yuan-Hou Chen ◽  
Jui-Ting Hsu ◽  
...  

To improve the accuracy of bracket placement in vivo, a protocol and device were introduced, which consisted of operative procedures for accurate control, a computer-aided design, and an augmented reality–assisted bracket navigation system. The present study evaluated the accuracy of this protocol. Methods: Thirty-one incisor teeth were tested from four participators. The teeth were bonded by novice and expert orthodontists. Compared with the control group by Boone gauge and the experiment group by augmented reality-assisted bracket navigation system, our study used for brackets measurement. To evaluate the accuracy, deviations of positions for bracket placement were measured. Results: The augmented reality-assisted bracket navigation system and control group were used in the same 31 cases. The priority of bonding brackets between control group or experiment group was decided by tossing coins, and then the teeth were debonded and the other technique was used. The medium vertical (incisogingival) position deviation in the control and AR groups by the novice orthodontist was 0.90 ± 0.06 mm and 0.51 ± 0.24 mm, respectively (p < 0.05), and by the expert orthodontist was 0.40 ± 0.29 mm and 0.29 ± 0.08 mm, respectively (p < 0.05). No significant changes in the horizontal position deviation were noted regardless of the orthodontist experience or use of the augmented reality–assisted bracket navigation system. Conclusion: The augmented reality–assisted bracket navigation system increased the accuracy rate by the expert orthodontist in the incisogingival direction and helped the novice orthodontist guide the bracket position within an acceptable clinical error of approximately 0.5 mm.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Vaughan Murphy ◽  
Brandon P. R. Edmonds ◽  
Ana Luisa Trejos

Twisted coiled actuators (TCAs) are a type of soft actuator made from polymer fibres such as nylon sewing thread. As they provide motion in a compact, lightweight, and flexible package, they provide a solution to the actuation of wearable mechatronic devices for motion assistance. Their limitation is that they provide low total force, requiring them to actuate in parallel with multiple units. Previous literature has shown that the force and stroke production can be improved by incorporating them into fabric meshes. A fabric mesh could also improve the contraction efficiency, strain rate, and user comfort. Therefore, this study focused on measuring these performance metrics for a set of TCAs embedded into a woven fabric mesh. The experimental results show that the stroke of the actuators scaled linearly with the number of activated TCAs, achieving a maximum applied force of 11.28 N, a maximum stroke of 12.23%, and an efficiency of 1.8%. Additionally, two control methods were developed and evaluated, resulting in low overshoot and steady-state error. These results indicate that the designed actuators are viable for use in wearable mechatronic devices, since they can scale to meet different requirements, while being able to be accurately controlled with minimal additional components.


Sign in / Sign up

Export Citation Format

Share Document