Quality Enhancement of Location Based Services Through Real Time Context Aware Obfuscation Using Crowd Sourcing

Author(s):  
Priti Jagwani ◽  
Saroj Kaushik
2016 ◽  
Vol 123 ◽  
pp. 179-191 ◽  
Author(s):  
Marika Vellei ◽  
Sukumar Natarajan ◽  
Benjamin Biri ◽  
Julian Padget ◽  
Ian Walker

Author(s):  
Hongli Wang ◽  
Bin Guo ◽  
Jiaqi Liu ◽  
Sicong Liu ◽  
Yungang Wu ◽  
...  

Deep Neural Networks (DNNs) have made massive progress in many fields and deploying DNNs on end devices has become an emerging trend to make intelligence closer to users. However, it is challenging to deploy large-scale and computation-intensive DNNs on resource-constrained end devices due to their small size and lightweight. To this end, model partition, which aims to partition DNNs into multiple parts to realize the collaborative computing of multiple devices, has received extensive research attention. To find the optimal partition, most existing approaches need to run from scratch under given resource constraints. However, they ignore that resources of devices (e.g., storage, battery power), and performance requirements (e.g., inference latency), are often continuously changing, making the optimal partition solution change constantly during processing. Therefore, it is very important to reduce the tuning latency of model partition to realize the real-time adaption under the changing processing context. To address these problems, we propose the Context-aware Adaptive Surgery (CAS) framework to actively perceive the changing processing context, and adaptively find the appropriate partition solution in real-time. Specifically, we construct the partition state graph to comprehensively model different partition solutions of DNNs by import context resources. Then "the neighbor effect" is proposed, which provides the heuristic rule for the search process. When the processing context changes, CAS adopts the runtime search algorithm, Graph-based Adaptive DNN Surgery (GADS), to quickly find the appropriate partition that satisfies resource constraints under the guidance of the neighbor effect. The experimental results show that CAS realizes adaptively rapid tuning of the model partition solutions in 10ms scale even for large DNNs (2.25x to 221.7x search time improvement than the state-of-the-art researches), and the total inference latency still keeps the same level with baselines.


2018 ◽  
Vol 28 (2) ◽  
pp. 197-219 ◽  
Author(s):  
Xiangmin Zhou ◽  
Dong Qin ◽  
Lei Chen ◽  
Yanchun Zhang
Keyword(s):  

2014 ◽  
Vol 23 (01) ◽  
pp. 27-35 ◽  
Author(s):  
S. de Lusignan ◽  
S-T. Liaw ◽  
C. Kuziemsky ◽  
F. Mold ◽  
P. Krause ◽  
...  

Summary Background: Generally benefits and risks of vaccines can be determined from studies carried out as part of regulatory compliance, followed by surveillance of routine data; however there are some rarer and more long term events that require new methods. Big data generated by increasingly affordable personalised computing, and from pervasive computing devices is rapidly growing and low cost, high volume, cloud computing makes the processing of these data inexpensive. Objective: To describe how big data and related analytical methods might be applied to assess the benefits and risks of vaccines. Method: We reviewed the literature on the use of big data to improve health, applied to generic vaccine use cases, that illustrate benefits and risks of vaccination. We defined a use case as the interaction between a user and an information system to achieve a goal. We used flu vaccination and pre-school childhood immunisation as exemplars. Results: We reviewed three big data use cases relevant to assessing vaccine benefits and risks: (i) Big data processing using crowd-sourcing, distributed big data processing, and predictive analytics, (ii) Data integration from heterogeneous big data sources, e.g. the increasing range of devices in the “internet of things”, and (iii) Real-time monitoring for the direct monitoring of epidemics as well as vaccine effects via social media and other data sources. Conclusions: Big data raises new ethical dilemmas, though its analysis methods can bring complementary real-time capabilities for monitoring epidemics and assessing vaccine benefit-risk balance.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-30
Author(s):  
Nisha Panwar ◽  
Shantanu Sharma ◽  
Guoxi Wang ◽  
Sharad Mehrotra ◽  
Nalini Venkatasubramanian ◽  
...  

Contemporary IoT environments, such as smart buildings, require end-users to trust data-capturing rules published by the systems. There are several reasons why such a trust is misplaced—IoT systems may violate the rules deliberately or IoT devices may transfer user data to a malicious third-party due to cyberattacks, leading to the loss of individuals’ privacy or service integrity. To address such concerns, we propose IoT Notary , a framework to ensure trust in IoT systems and applications. IoT Notary provides secure log sealing on live sensor data to produce a verifiable “proof-of-integrity,” based on which a verifier can attest that captured sensor data adhere to the published data-capturing rules. IoT Notary is an integral part of TIPPERS, a smart space system that has been deployed at the University of California, Irvine to provide various real-time location-based services on the campus. We present extensive experiments over real-time WiFi connectivity data to evaluate IoT Notary , and the results show that IoT Notary imposes nominal overheads. The secure logs only take 21% more storage, while users can verify their one day’s data in less than 2 s even using a resource-limited device.


Author(s):  
V. Santhi ◽  
B. K. Tripathy

The image quality enhancement process is considered as one of the basic requirement for high-level image processing techniques that demand good quality in images. High-level image processing techniques include feature extraction, morphological processing, pattern recognition, automation engineering, and many more. Many classical enhancement methods are available for enhancing the quality of images and they can be carried out either in spatial domain or in frequency domain. But in real time applications, the quality enhancement process carried out by classical approaches may not serve the purpose. It is required to combine the concept of computational intelligence with the classical approaches to meet the requirements of real-time applications. In recent days, Particle Swarm Optimization (PSO) technique is considered one of the new approaches in optimization techniques and it is used extensively in image processing and pattern recognition applications. In this chapter, image enhancement is considered an optimization problem, and different methods to solve it through PSO are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document