Neuronal Current Imaging with Ultralow-Field NMR Techniques

2019 ◽  
pp. 1-6
Author(s):  
Rainer Körber ◽  
Martin Burghoff ◽  
Lutz Trahms
2019 ◽  
pp. 1295-1300
Author(s):  
Rainer Körber ◽  
Martin Burghoff ◽  
Lutz Trahms

2014 ◽  
pp. 973-978
Author(s):  
Rainer Körber ◽  
Martin Burghoff ◽  
Lutz Trahms

Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Tchoumtchoua ◽  
M Halabalaki ◽  
D Njamen ◽  
J Mbanya ◽  
L Skaltsounis

2019 ◽  
Vol 16 (6) ◽  
pp. 474-477 ◽  
Author(s):  
Pham Van Khang ◽  
Nguyen Thi Hien Lan ◽  
Le Quang Truong ◽  
Mai Thi Minh Chau ◽  
Mai Xuan Truong ◽  
...  

In this report, two new steroidal glycosides were isolated and determined from n-butanol fraction of A.asphodeloides. The structures were confirmed in comparison with the spectral data of known compounds by using different spectroscopic analysis approaches including 1D & 2D-NMR techniques and HRMS. The anti-proliferation screening against cancer cell lines A549 and HeLa indicated that compound 1 exhibited good inhibitory activities with IC50 values of 0.79 and 0.55 µg/mL, respectively.


2020 ◽  
Vol 17 (2) ◽  
pp. 185-196
Author(s):  
Shyamal K. Jash ◽  
Dilip Gorai ◽  
Lalan C. Mandal ◽  
Rajiv Roy

Flavonoids are considered as a significant class of compounds among the natural products, exhibiting a variety of structural skeletons as well as multidirectional biological potentials. In structural elucidations of natural products, Nuclear Magnetic Resonance (NMR) spectroscopy has been playing a vital role; the technique is one of the sharpest tools in the hands of natural products chemists. The present resume deals with hard-core applications of such spectral technique, particularly in structural elucidation of flavonoids; different NMR techniques including 1H-NMR, 13C-NMR, and 2D-NMR [viz. 1H-1H COSY, COLOC, HMBC, HMQC] are described in detail.


1997 ◽  
Vol 62 (11) ◽  
pp. 1747-1753 ◽  
Author(s):  
Radek Marek

Determination of 15N chemical shifts and heteronuclear coupling constants of substituted 2,2-dimethylpenta-3,4-dienal hydrazones is presented. The chemical shifts were determined by gradient-enhanced inverse-detected NMR techniques and 1H-15N coupling constants were extracted from phase-sensitive gradient-enhanced single-quantum multiple bond correlation experiments. Stereospecific behaviour of the coupling constants 2J(1H,15N) and 1J(1H,13C) has been used to determine the configuration on a C=N double bond. The above-mentioned compounds exist predominantly as E isomers in deuteriochloroform.


2004 ◽  
Vol 69 (5) ◽  
pp. 996-1008 ◽  
Author(s):  
Steven J. Langford ◽  
Clint P. Woodward

A strategy in preparing a family of hexameric porphyrin cubes based on the interplay of Sn(IV)-O and Ru(II)-N interactions is described. In this first iteration, we have prepared the heptamer [SnIV(TPyP)·(4)2][Ru(CO)(TPP)]6 (4 = (E)-(3-(4-pyridyl)acrylate)) constituting a 5,10,15,20-tetra(4-pyridyl)porphyrin (TPyP) core and 5,10,15,20-tetraphenylporphyrin (TPP) faces and compared its formation by stepwise and "one-pot" strategies where up to nine components are assembled in a single step in a regiospecific manner. In one example, the heptamer is formed around the template [SnIV(TPyP)·(4)2] bearing pyridine groups in which the nitrogens radiate octahedrally along each vertex. The ability to modulate the axial vertex through choice of pyridine is also demonstrated. 1H NMR measurements on [SnIV(TPyP)·(4)2][Ru(CO)(TPP)]6 indicate that the protons on the core template are extremely shielded as a result of the anisotropy of the peripheral porphyrin units. Various NMR techniques, including NOESY experiments, have been used to characterise the heptamer in solution.


ChemInform ◽  
2006 ◽  
Vol 37 (23) ◽  
Author(s):  
Alessandro Bagno ◽  
Federico Rastrelli ◽  
Giacomo Saielli

Sign in / Sign up

Export Citation Format

Share Document