Baryon Asymmetry in the Early Universe

Author(s):  
Simone Biondini
1980 ◽  
Vol 91 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Edward W. Kolb ◽  
Stephen Wolfram

Author(s):  
Tista Mukherjee ◽  
Madhurima Pandey ◽  
Debasish Majumdar ◽  
Ashadul Halder

The recent results of IceCube Neutrino Observatory include an excess of PeV neutrino events which appear to follow a broken power-law different from the other lower energy neutrinos detected by IceCube. The possible astrophysical source of these neutrinos is still unknown. One possible source of such neutrinos could be the decay of nonthermal, long-lived heavy mass dark matter, whose mass should be [Formula: see text] GeV and could have produced at the very early Universe. They can undergo cascading decay via both hadronic and leptonic channels to finally produce such high energy neutrinos. This possibility has been explored in this work by studying the decay flux of these dark matter candidates. The mass and lifetime of such dark matter particles have been obtained by performing a [Formula: see text] fit with the PeV neutrino data of IceCube. We finally estimate the baryon asymmetry produced in the Universe due to such dark matter decay.


Author(s):  
Chitta Ranjan Das ◽  
Katri Huitu ◽  
Zhanibek Kurmanaliyev ◽  
Bakytbek Mauyey ◽  
Timo Kärkkäinen

The crucial phenomenological and experimental predictions for new physics are outlined, where the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, leptonic CP-violation) could find their solutions. The analogies between the cosmological neutrino mass scale from the early universe data and laboratory probes are discussed and the search for new physics and phenomena.


1981 ◽  
Vol 101 (3) ◽  
pp. 155-158 ◽  
Author(s):  
Saul Barshay

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Raymond T. Co ◽  
Keisuke Harigaya ◽  
Aaron Pierce

Abstract An axion rotating in field space can produce dark photons in the early universe via tachyonic instability. This explosive particle production creates a background of stochastic gravitational waves that may be visible at pulsar timing arrays or other gravitational wave detectors. This scenario provides a novel history for dark photon dark matter. The dark photons may be warm at a level detectable in future 21-cm line surveys. For a consistent cosmology, the radial direction of the complex field containing the axion must be thermalized. We explore a concrete thermalization mechanism in detail and also demonstrate how this setup can be responsible for the generation of the observed baryon asymmetry.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Maxim Dvornikov ◽  
Victor B. Semikoz

AbstractWe study a matter turbulence caused by strong random hypermagnetic fields (HMFs) that influence the baryon asymmetry evolution due to the Abelian anomalies in the symmetric phase in the early Universe. Such a matter turbulence is stipulated by the presence of the advection term in the induction equation for which a fluid velocity is dominated by the Lorentz force in the Navier–Stokes equation. For random HMFs, having nonzero mean squared strengths, we calculate the spectra for the HMF energy and the HMF helicity densities. The latter function governs the evolution of the fermion asymmetries in the symmetric phase before the electroweak phase transition (EWPT). In the simplest model based on the first SM generation for the lepton asymmetries of $$e_\mathrm {R,L}$$ e R , L and $$\nu _{e_\mathrm {L}}$$ ν e L , we calculate a decline of all fermion asymmetries including the baryon asymmetry, given by the ‘t Hooft conservation law, when one accounts for a turbulence of HMFs during the universe cooling down to EWPT. We obtain that the stronger the mean squared strength of random initial HMFs is, the deeper the fermion asymmetries decrease, compared to the case in the absence of any turbulence.


2018 ◽  
Vol 33 (31) ◽  
pp. 1844034 ◽  
Author(s):  
Zurab Berezhiani

I discuss the possibility of dark matter conversion into our antimatter, assuming that a part of dark matter is represented by a hypothetical mirror matter. In the Early Universe, [Formula: see text] and [Formula: see text] violating interactions between the particles of ordinary and mirror worlds can co-generate their baryon asymmetries in comparable amounts, [Formula: see text], also predicting the sign of mirror baryon asymmetry. At low energies, the same interactions induce particle mixing phenomena between two sectors. In this way, e.g. mirror neutron [Formula: see text] should oscillate into our antineutron [Formula: see text], with probability that depends on environmental conditions as matter density and magnetic fields. This oscillation can be faster than the neutron decay itself, with [Formula: see text] conversion rate accessible for the experimental search. It can have fascinating phenomenological and astrophysical consequences, and can potentially open an unlimited source of energy by transforming dark mirror matter into antimatter in a controllable way.


Sign in / Sign up

Export Citation Format

Share Document