Studying the Historical Structure Damage Due to Soil Hazards and Examination of Applied Repairment-Strengthening Techniques

Author(s):  
Rüya Kılıç Demircan ◽  
Pınar Sezin Öztürk Kardoğan
Keyword(s):  

2021 ◽  
Vol 11 (9) ◽  
pp. 4125
Author(s):  
Zhe Xiang ◽  
Nong Zhang ◽  
Zhengzheng Xie ◽  
Feng Guo ◽  
Chenghao Zhang

The higher strength of a hard roof leads to higher coal pressure during coal mining, especially under extra-thick coal seam conditions. This study addresses the hard roof control problem for extra-thick coal seams using the air return roadway 4106 (AR 4106) of the Wenjiapo Coal Mine as a case study. A new surrounding rock control strategy is proposed, which mainly includes 44 m deep-hole pre-splitting blasting for stress releasing and flexible 4-m-long bolt for roof supporting. Based on the new support scheme, field tests were performed. The results show that roadway support failure in traditional scenarios is caused by insufficient bolt length and extensive rotary subsidence of the long cantilever beam of the hard roof. In the new proposed scheme, flexible 4-m-long bolts are shown to effectively restrain the initial expansion deformation of the top coal. The deflection of the rock beam anchored by the roof foundation are improved. Deep-hole pre-splitting blasting effectively reduces the cantilever distance of the “block B” of the voussoir beam structure. The stress environment of the roadway surrounding rock is optimized and anchorage structure damage is inhibited. The results provide insights regarding the safe control of roadway roofs under extra-thick coal seam conditions.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tomoya Tsuchihashi ◽  
Nobuyuki Kakimoto ◽  
Takashi Takeuchi ◽  
Tomohiro Suenaga ◽  
Takayuki Suzuki ◽  
...  

Abstract Background Coronary artery aneurysm (CAA) is an important complication of Kawasaki disease (KD) that is associated with arterial structure damage. However, few studies have examined structural changes in coronary arteries that are not associated with CAA. Methods We examined coronary arteries in KD patients with CAAs who underwent follow-up coronary angiography (CAG) and optical coherence tomography (OCT). Coronary arterial branches with no abnormal findings during the most recent CAG were classified into two groups. Arteries with an acute-phase CAA that later regressed were classified as group R; arteries with no abnormal findings on either acute or convalescent phase CAG were classified as group N. Coronary arterial wall structural changes were compared between groups using OCT. Results Fifty-seven coronary arterial branches in 23 patients were evaluated by OCT. Thirty-six branches showed no abnormality during the most recent CAG. Both groups R and N comprised 18 branches. Maximum intimal thicknesses in groups R and N were 475 and 355 µm, respectively (p = 0.007). The incidences of media disruption were 100% and 67%, respectively (p = 0.02). Calcification, macrophage accumulation, and thrombus were not found in either group. Conclusions Intimal thickening and disruption of the media occur in coronary arteries with acute phase CAAs that later regress in the convalescent phase, as well as in arteries with normal CAG findings in the acute and convalescent phases.



2012 ◽  
Vol 170-173 ◽  
pp. 3594-3597
Author(s):  
Hai Tao Wan ◽  
Peng Li

Reinforced concrete (RC) shear wall component is a very important lateral force-resisting member which is widely used in China. Its seismic behavior has a great impact on the seismic performance of the overall structure. Damage of some RC shear wall structures under the earthquake is caused by the damage of shear wall components, So shear wall components are an essential seismic members. However, the test datum are not enough to study the performance of RC shear wall components, Therefore, Finite element simulation of RC shear wall components is performed by software ABAQUS in the paper. Through comparing with the finite element simulation and the test of load - displacement skeleton curve, failure mode and steel bar strain, the result shows that the finite element simulation can more accurately simulate the situation of the test, verifying the finite element simulation is the most important research tool besides test.



2012 ◽  
Vol 78 (6) ◽  
pp. 625-635 ◽  
Author(s):  
Sarah E. Battersby ◽  
Michael E. Hodgson ◽  
Jiayu Wang




2012 ◽  
Vol 31 ◽  
pp. 534-540 ◽  
Author(s):  
Yu Bai ◽  
Shimao He ◽  
Wenjing Nie ◽  
Jing Gao ◽  
Xueqing Song


Author(s):  
J. H. Wang ◽  
C. S. Liou

Abstract A mechanical system generally consists of many substructures. However, it is impossible to observe the dynamic behavior of any substructure directly when the whole structure is in operation. A method was proposed in this work to determine the FRFs of a substructure by using the measured FRFs of the whole structure and the priorly known FRFs of another substructure With this method, one can detect the structural damage more easily by observing the change of the FRFs of the damaged substructure.



2021 ◽  
pp. 108670
Author(s):  
Ye Yuan ◽  
Wulin Yang ◽  
Jianquan Sang ◽  
Jiajun Zhu ◽  
Licai Fu ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document