Between Data Mining and Predictive Analytics Techniques to Cybersecurity Protection on eLearning Environments

Author(s):  
José Manuel ◽  
Raul Cordeiro ◽  
Carla Silva
2014 ◽  
Author(s):  
Mohamed Sidahmed ◽  
Eric Ziegel ◽  
Shahryar Shirzadi ◽  
David Stevens ◽  
Maria Marcano

2013 ◽  
Author(s):  
M. Musa Bilal ◽  
Masood Hussain ◽  
Iqra Basharat ◽  
Mamuna Fatima

Web Services ◽  
2019 ◽  
pp. 105-126
Author(s):  
N. Nawin Sona

This chapter aims to give an overview of the wide range of Big Data approaches and technologies today. The data features of Volume, Velocity, and Variety are examined against new database technologies. It explores the complexity of data types, methodologies of storage, access and computation, current and emerging trends of data analysis, and methods of extracting value from data. It aims to address the need for clarity regarding the future of RDBMS and the newer systems. And it highlights the methods in which Actionable Insights can be built into public sector domains, such as Machine Learning, Data Mining, Predictive Analytics and others.


2011 ◽  
pp. 1323-1331
Author(s):  
Jeffrey W. Seifert

A significant amount of attention appears to be focusing on how to better collect, analyze, and disseminate information. In doing so, technology is commonly and increasingly looked upon as both a tool, and, in some cases, a substitute, for human resources. One such technology that is playing a prominent role in homeland security initiatives is data mining. Similar to the concept of homeland security, while data mining is widely mentioned in a growing number of bills, laws, reports, and other policy documents, an agreed upon definition or conceptualization of data mining appears to be generally lacking within the policy community (Relyea, 2002). While data mining initiatives are usually purported to provide insightful, carefully constructed analysis, at various times data mining itself is alternatively described as a technology, a process, and/or a productivity tool. In other words, data mining, or factual data analysis, or predictive analytics, as it also is sometimes referred to, means different things to different people. Regardless of which definition one prefers, a common theme is the ability to collect and combine, virtually if not physically, multiple data sources, for the purposes of analyzing the actions of individuals. In other words, there is an implicit belief in the power of information, suggesting a continuing trend in the growth of “dataveillance,” or the monitoring and collection of the data trails left by a person’s activities (Clarke, 1988). More importantly, it is clear that there are high expectations for data mining, or factual data analysis, being an effective tool. Data mining is not a new technology but its use is growing significantly in both the private and public sectors. Industries such as banking, insurance, medicine, and retailing commonly use data mining to reduce costs, enhance research, and increase sales. In the public sector, data mining applications initially were used as a means to detect fraud and waste, but have grown to also be used for purposes such as measuring and improving program performance. While not completely without controversy, these types of data mining applications have gained greater acceptance. However, some national defense/homeland security data mining applications represent a significant expansion in the quantity and scope of data to be analyzed. Moreover, due to their security-related nature, the details of these initiatives (e.g., data sources, analytical techniques, access and retention practices, etc.) are usually less transparent.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Qiwen Jin ◽  
Zheng Liu ◽  
Junchi Bin ◽  
Weixin Ren

In-service bridge structural performance analysis and prediction are usually complicated and challenging because of many unknown and uncertain factors. Contrary to the traditional structural appearance inspections and load tests, structural health monitoring (SHM) can provide a perspective for online analysis, prediction, and early warning. So far, SHM has been widely used in many bridge structures, and a lot of bridge SHM data have also been collected. However, the existing studies usually focus on some independent and unsystematic analysis methods, which are hard to use widely in engineering applications to reveal the overall structural performance. This study focuses on the structural performance analysis and prediction of the highway in-service bridge. The dynamic problems in bridge SHM are pointed out firstly, followed by a detailed analysis about the characteristics of bridge SHM data. With the consideration of different characteristics, three targeted analysis methods are proposed. An urban concrete-filled steel tube (CFST) truss girder bridge (opened to traffic in 1995) is also presented, which once experienced some prominent vibration problems. The bridge SHM system is designed and stalled after several appearance inspections, load tests, and some reinforcement measures. The data mining methods proposed (distribution function, association analysis, and time-series analysis) are employed for the analysis and prediction of structural response and deterioration extent. This study can provide some references for maintenance and management and can also build a foundation for further online analysis and early warning.


Author(s):  
J. W. Seifert

A significant amount of attention appears to be focusing on how to better collect, analyze, and disseminate information. In doing so, technology is commonly and increasingly looked upon as both a tool, and, in some cases, a substitute, for human resources. One such technology that is playing a prominent role in homeland security initiatives is data mining. Similar to the concept of homeland security, while data mining is widely mentioned in a growing number of bills, laws, reports, and other policy documents, an agreed upon definition or conceptualization of data mining appears to be generally lacking within the policy community (Relyea, 2002). While data mining initiatives are usually purported to provide insightful, carefully constructed analysis, at various times data mining itself is alternatively described as a technology, a process, and/or a productivity tool. In other words, data mining, or factual data analysis, or predictive analytics, as it also is sometimes referred to, means different things to different people. Regardless of which definition one prefers, a common theme is the ability to collect and combine, virtually if not physically, multiple data sources, for the purposes of analyzing the actions of individuals. In other words, there is an implicit belief in the power of information, suggesting a continuing trend in the growth of “dataveillance,” or the monitoring and collection of the data trails left by a person’s activities (Clarke, 1988). More importantly, it is clear that there are high expectations for data mining, or factual data analysis, being an effective tool. Data mining is not a new technology but its use is growing significantly in both the private and public sectors. Industries such as banking, insurance, medicine, and retailing commonly use data mining to reduce costs, enhance research, and increase sales. In the public sector, data mining applications initially were used as a means to detect fraud and waste, but have grown to also be used for purposes such as measuring and improving program performance. While not completely without controversy, these types of data mining applications have gained greater acceptance. However, some national defense/homeland security data mining applications represent a significant expansion in the quantity and scope of data to be analyzed. Moreover, due to their security-related nature, the details of these initiatives (e.g., data sources, analytical techniques, access and retention practices, etc.) are usually less transparent.


2020 ◽  
Vol 12 (4) ◽  
pp. 1-19
Author(s):  
Prathap Rudra Boppuru ◽  
Ramesha K.

In developing countries like India, crime plays a detrimental role in economic growth and prosperity. With the increase in delinquencies, law enforcement needs to deploy limited resources optimally to protect citizens. Data mining and predictive analytics provide the best options for the same. This paper examines the news feed data collected from various sources regarding crime in India and Bangalore city. The crimes are then classified on the geographic density and the crime patterns such as time of day to identify and visualize the distribution of national and regional crime such as theft, murder, alcoholism, assault, etc. In total, 68 types of crime-related dictionary keywords are classified into six classes based on the news feed data collected for one year. Kernel density estimation method is used to identify the hotspots of crime. With the help of the ARIMA model, time series prediction is performed on the data. The diversity of crime patterns is visualized in a customizable way with the help of a data mining platform.


Sign in / Sign up

Export Citation Format

Share Document