scholarly journals Towards Detecting High-Uptake Lesions from Lung CT Scans Using Deep Learning

Author(s):  
Krzysztof Pawełczyk ◽  
Michal Kawulok ◽  
Jakub Nalepa ◽  
Michael P. Hayball ◽  
Sarah J. McQuaid ◽  
...  
Keyword(s):  
Ct Scans ◽  
Author(s):  
Amel Imene Hadj Bouzid ◽  
Said Yahiaoui ◽  
Anis Lounis ◽  
Sid-Ahmed Berrani ◽  
Hacène Belbachir ◽  
...  

Coronavirus disease is a pandemic that has infected millions of people around the world. Lung CT-scans are effective diagnostic tools, but radiologists can quickly become overwhelmed by the flow of infected patients. Therefore, automated image interpretation needs to be achieved. Deep learning (DL) can support critical medical tasks including diagnostics, and DL algorithms have successfully been applied to the classification and detection of many diseases. This work aims to use deep learning methods that can classify patients between Covid-19 positive and healthy patient. We collected 4 available datasets, and tested our convolutional neural networks (CNNs) on different distributions to investigate the generalizability of our models. In order to clearly explain the predictions, Grad-CAM and Fast-CAM visualization methods were used. Our approach reaches more than 92% accuracy on 2 different distributions. In addition, we propose a computer aided diagnosis web application for Covid-19 diagnosis. The results suggest that our proposed deep learning tool can be integrated to the Covid-19 detection process and be useful for a rapid patient management.


2021 ◽  
Author(s):  
Mustafa Ghaderzadeh ◽  
Farkhondeh Asadi ◽  
Ramezan Jafari ◽  
Davood Bashash ◽  
Hassan Abolghasemi ◽  
...  

BACKGROUND Due to the COVID-19 pandemic and the imminent collapse of healthcare systems following the excessive consumption of financial, hospital, and medicinal resources, the World Health Organization (WHO) changed the alert level on the COVID-19 pandemic from high to very high. Meanwhile, the world began to favor less expensive and more precise COVID-19 detection methods. Machine vision-based COVID-19 detection methods especially Deep learning as a diagnostic technique in the early stages of the disease have found great importance during the pandemic. OBJECTIVE This study aimed to design a highly efficient Computer-Aided Detection (CAD) system for COVID-19 by using a NASNet-based algorithm. n images of 190 persons suspected of COVID-19, was used. METHODS A state-of-the-art pre-trained CNN network for image feature extraction, called NASNet, was adopted to identify patients with COVID-19 in the first stages of the disease. A local dataset, comprising 10153 CT scan images of 190 persons suspected of COVID-19, was used. RESULTS After fitting on the training dataset, hyper-parameter tuning and finally topological alterations of the classifier block, the proposed NASNet-based model was evaluated on the test dataset and yielded remarkable results. The proposed model's performance achieved a detection sensitivity, specificity, and accuracy of 0.999, 0.986, and 0.996, respectively. CONCLUSIONS The proposed model achieved acceptable results in the categorization of two data classes. Therefore, a CAD system was designed based on this model for COVID-19 detection using multiple lung CT scans. The system managed to differentiate all the COVID-19 cases from non-COVID-19 ones without any error in the application phase. Overall, the proposed deep learning-based CAD system can greatly aid radiologists in the detection of COVID-19 in its early stages. During the COVID-19 pandemic, the use of CAD system as a screening tool accelerates the process of disease detection and prevents the loss of healthcare resources.


2021 ◽  
Vol 7 ◽  
pp. e345
Author(s):  
Mojtaba Mohammadpoor ◽  
Mehran Sheikhi karizaki ◽  
Mina Sheikhi karizaki

Background COVID-19 pandemic imposed a lockdown situation to the world these past months. Researchers and scientists around the globe faced serious efforts from its detection to its treatment. Methods Pathogenic laboratory testing is the gold standard but it is time-consuming. Lung CT-scans and X-rays are other common methods applied by researchers to detect COVID-19 positive cases. In this paper, we propose a deep learning neural network-based model as an alternative fast screening method that can be used for detecting the COVID-19 cases by analyzing CT-scans. Results Applying the proposed method on a publicly available dataset collected of positive and negative cases showed its ability on distinguishing them by analyzing each individual CT image. The effect of different parameters on the performance of the proposed model was studied and tabulated. By selecting random train and test images, the overall accuracy and ROC-AUC of the proposed model can easily exceed 95% and 90%, respectively, without any image pre-selecting or preprocessing.


2020 ◽  
Vol 152 ◽  
pp. S949
Author(s):  
L. Bokhorst ◽  
M.H.F. Savenije ◽  
M.P.W. Intven ◽  
C.A.T. Van den Berg

Author(s):  
Vlad Vasilescu ◽  
Ana Neacsu ◽  
Emilie Chouzenoux ◽  
Jean-Christophe Pesquet ◽  
Corneliu Burileanu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Doil Kim ◽  
Jiyoung Choi ◽  
Duhgoon Lee ◽  
Hyesun Kim ◽  
Jiyoung Jung ◽  
...  

AbstractA novel motion correction algorithm for X-ray lung CT imaging has been developed recently. It was designed to perform for routine chest or thorax CT scans without gating, namely axial or helical scans with pitch around 1.0. The algorithm makes use of two conjugate partial angle reconstruction images for motion estimation via non-rigid registration which is followed by a motion compensated reconstruction. Differently from other conventional approaches, no segmentation is adopted in motion estimation. This makes motion estimation of various fine lung structures possible. The aim of this study is to explore the performance of the proposed method in correcting the lung motion artifacts which arise even under routine CT scans with breath-hold. The artifacts are known to mimic various lung diseases, so it is of great interest to address the problem. For that purpose, a moving phantom experiment and clinical study (seven cases) were conducted. We selected the entropy and positivity as figure of merits to compare the reconstructed images before and after the motion correction. Results of both phantom and clinical studies showed a statistically significant improvement by the proposed method, namely up to 53.6% (p < 0.05) and up to 35.5% (p < 0.05) improvement by means of the positivity measure, respectively. Images of the proposed method show significantly reduced motion artifacts of various lung structures such as lung parenchyma, pulmonary vessels, and airways which are prominent in FBP images. Results of two exemplary cases also showed great potential of the proposed method in correcting motion artifacts of the aorta which is known to mimic aortic dissection. Compared to other approaches, the proposed method provides an excellent performance and a fully automatic workflow. In addition, it has a great potential to handle motions in wide range of organs such as lung structures and the aorta. We expect that this would pave a way toward innovations in chest and thorax CT imaging.


Sign in / Sign up

Export Citation Format

Share Document