Impact Analysis of Geometry Parameters of Buoy on the Pitching Motion Mechanism and Power Response for Multi-section Wave Energy Converter

Author(s):  
Biao Li ◽  
Hongtao Gao
2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095015
Author(s):  
Biao Li ◽  
Fangfang Sui ◽  
Bingsong Yang

In the practical engineering applications of multi-body floating wave energy converter (WEC), the traditional geometric optimization is always expensive and time-consuming. This study aim to propose a more efficient geometry optimization strategy with a hinged double-body floating WEC as the study object. The influences of geometric parameters of the buoys on the pitching motion and energy conversion ability are analyzed by numerical simulation. Simulation results show that the resonance state of the pitching motion of the buoys mainly depends on their radius and draft rather than the length; But the length of the buoys, rather than the radius and draft, always has a significant effect on the pitching phase difference of the adjacent buoys. Based on the motion analysis and resonance response, an efficient multi-factor geometry optimization strategy is put forwarded. By the strategy, the sub-optimal and optimal geometrical parameters are solved out quickly at several typical wave conditions of China Seas. The results indicate that the optimal total length of WEC is approximately equal to the wave length. The optimal diameter of buoys is about 25% of the length of buoys. And the optimal draft should attain about 61% of the diameter.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2432 ◽  
Author(s):  
Qiang Zhai ◽  
Linsen Zhu ◽  
Shizhou Lu

This study presents a life cycle assessment (LCA) study for a buoy-rope-drum (BRD) wave energy converter (WEC), so as to understand the environmental performance of the BRD WEC by eco-labeling its life cycle stages and processes. The BRD WEC was developed by a research group at Shandong University (Weihai). The WEC consists of three main functional modules including buoy, generator and mooring modules. The designed rated power capacity is 10 kW. The LCA modeling is based on data collected from actual design, prototype manufacturing, installation and onsite sea test. Life cycle inventory (LCI) analysis and life cycle impact analysis (LCIA) were conducted. The analyses show that the most significant environmental impact contributor is identified to be the manufacturing stage of the BRD WEC due to consumption of energy and materials. Potential improvement approaches are proposed in the discussion. The LCI and LCIA assessment results are then benchmarked with results from reported LCA studies of other WECs, tidal energy converters, as well as offshore wind and solar PV systems. This study presents the energy and carbon intensities and paybacks with 387 kJ/kWh, 89 gCO2/kWh, 26 months and 23 months respectively. The results show that the energy and carbon intensities of the BRD WEC are slightly larger than, however comparable, in comparison with the referenced WECs, tidal, offshore wind and solar PV systems. A sensitivity analysis was carried out by varying the capacity factor from 20–50%. The energy and carbon intensities could reach as much as 968 kJ/kWh and 222 gCO2/kWh respectively while the capacity factor decreasing to 20%. Limitations for this study and scope of future work are discussed in the conclusion.


2014 ◽  
Vol 1030-1032 ◽  
pp. 497-500
Author(s):  
Lin Feng Song ◽  
Li Ping Sun ◽  
Shang Mao Ai ◽  
Jia Yu Qian

In order to research the motion mechanism of floating multi-bodies, constraint matrix method (CMM) and potential flow theory are used. Compared to the other method, CMM is easier to model and faster in calculating. The Pelamis wave energy converter is modeled by deriving the system to separate rigid bodies. CMM is used to simulate the Pelamis wave energy converter in time domain with code in house by FORTRAN, some important conclusions are got.


2021 ◽  
Vol 170 ◽  
pp. 1020-1039
Author(s):  
S.D.G.S.P. Gunawardane ◽  
G.A.C.T. Bandara ◽  
Young-Ho Lee

Sign in / Sign up

Export Citation Format

Share Document