A Light Weight Data Encryption Method for WSN Communication

Author(s):  
Kun-Lin Tsai ◽  
Fang-Yie Leu ◽  
Tung-Hung Su ◽  
Yi-Chen Chang
Author(s):  
Hamza Sajjad Ahmad ◽  
Muhammad Junaid Arshad ◽  
Muhammad Sohail Akram

To send data over the network, devices need to authenticate themselves within the network. After authentication, the device will be able to send the data in-network. After authentication, secure communication of devices is an important task that is done with an encryption method. IoT network devices have a very small circuit with low resources and low computation power. By considering low power, less memory, low computation, and all the aspect of IoT devices, an encryption technique is needed that is suitable for this type of device. As IoT networks are heterogeneous, each device has different hardware properties, and all the devices are not on one scale. To make IoT networks secure, this paper starts with the secure authentication mechanism to verify the device that wants to be a part of the network. After that, an encryption algorithm is presented that will make the communication secure. This encryption algorithm is designed by considering all the important aspects of IoT devices (low computation, low memory, and cost).


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Pengtao Yang ◽  
Guiling Sun ◽  
Jingfei He ◽  
Peiyao Zhou ◽  
Jiangjiang Liu

A new type of student information management system is designed to implement student information identification and management based on fingerprint identification. In order to ensure the security of data transmission, this paper proposes a data encryption method based on an improved AES algorithm. A new S-box is cleverly designed, which can significantly reduce the encryption time by improving ByteSub, ShiftRow, and MixColumn in the round transformation of the traditional AES algorithm with the process of look-up table. Experimental results show that the proposed algorithm can significantly improve the encryption time compared with the traditional AES algorithm.


Author(s):  
DECY NATALIANA ◽  
FEBRIAN HADIATNA ◽  
AHMAD FAUZI

ABSTRAKPada penelitian ini mencoba untuk memanfaatkan tag RFID sebagai media untuk menyimpan data berupa nilai nominal uang. Metode enkripsi data Ceasar Cipher akan diterapkan ke dalam sistem yang dirancang sehingga data nominal uang pada tag merupakan data yang terenkripsi. Enkripsi data ini dilakukan untuk memperkuat sistem keamanan yang telah terdapat pada tag, sehingga proses peretasan data akan lebih sulit untuk dilakukan. Perangkat keras yang digunakan untuk merealisasikan sistem terdiri dari unit reader RFID-RC522, tag MIFARE Classic S50 1 kbyte, dan Arduino UNO R3. Dari hasil pengujian diperoleh bahwa tag dapat digunakan untuk menyimpan data berupa nilai nominal uang dan dari sistem yang telah direalisasikan nilai nominal uang tersebut dapat ditambah atau dikurang jumlahnya dari Rp 0 – Rp 4.294.967.295. Penerapan metode Ceasar Cipher berhasil mengubah nilai nominal uang menjadi data yang terenkripsi.Kata Kunci: RFID, pembayaran elektronik, sistem keamanan, enkripsi data, ceasar cipher ABSTRACTIn this research will try to utilize RFID tag as data storage for a certain value of money. Ceasar cipher as encryption method will be applied to the implemented system so that this certain value of money inside the tag turned into an encrypted data. Ecryption of the data is done to hardened the security sistem that already exists in the tag itself, so any violation behavior like data cracking will be harder to accomplish. The hardware that used on the system consist of a reader unit RFID-RC522, MIFARE Classic tag S50 1kbyte, and Arduino UNO R3. The result of this research proofed that the tag could be utilized to store a certain value of money and with a well built implemented system, the data value could be incremented or decremented ranging from Rp 0 – Rp 4.294.967.295. Implementation of Ceasar Cipher method has succesfully turn that certain value of money inside the tag into an encrypted data.Keywords: RFID, Electronic payment, security system, data encryption, ceasar cipher


Big data security is the most focused research issue nowadays due to their increased size and the complexity involved in handling of large volume of data. It is more difficult to ensure security on big data handling due to its characteristics 4V’s. With the aim of ensuring security and flexible encryption computation on big data with reduced computation overhead in this work, framework with encryption (MRS) is presented with Hadoop Distributed file System (HDFS). Development of the MapReduce paradigm needs networked attached storage in addition to parallel processing. For storing as well as handling big data, HDFS are extensively utilized. This proposed method creates a framework for obtaining data from client and after that examining the received data, excerpt privacy policy and after that find the sensitive data. The security is guaranteed in this framework using key rotation algorithm which is an efficient encryption and decryption technique for safeguarding the data over big data. Data encryption is a means to protect data in storage with containing a key encryption saved and accessible to reuse the data while required. The outcome shows that the research method guarantees greater security for enormous amount of data and gives beneficial info to related clients. Therefore the outcome concluded that the proposed method is superior to the previous method. Finally, this research can be applied effectively on the various domains such as health care domains, educational domains, social networking domains, etc which require more security and increased volume of data.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 246 ◽  
Author(s):  
Hoyoung Yu ◽  
Youngmin Kim

Applying the data encryption method used in conventional personal computers (PC) to wireless communication devices such as IoT is not trivial. Because IoT equipment is extremely slow in transferring data and has a small hardware area compared with PCs, it is difficult to transfer large data and perform complicated operations. In particular, it is difficult to apply the RSA encryption method to wireless communication devices because it guarantees the stability of data encryption because it is difficult to factor extremely large prime numbers. Furthermore, it has become even more difficult to apply the RSA encryption method to IoT devices as a paper recently published indicated that it enables rapid fractional decomposition when using RSA encryption with a prime number generated through several pseudo-random number generators. To compensate for the disadvantages of RSA encryption, we propose a method that significantly reduces the encryption key using a true prime random number generator (TPRNG), which generates a prime number that cannot be predicted through bio-signals, and a disposable RSA encryption key. TPRNG has been verified by the National Institute of Standards and Technology. The NIST test and an RSA algorithm are implemented through Verilog.


Author(s):  
Raed Abu Zitar ◽  
Muhammed Jassem Al-Muhammed

The authors believe that the hybridization of two different approaches results in more complex encryption outcomes. The proposed method combines a symbolic approach, which is a table substitution method, with another paradigm that models real-life neurons (connectionist approach). This hybrid model is compact, nonlinear, and parallel. The neural network approach focuses on generating keys (weights) based on a feedforward neural network architecture that works as a mirror. The weights are used as an input for the substitution method. The hybrid model is verified and validated as a successful encryption method.


Sign in / Sign up

Export Citation Format

Share Document