Abyssal Mixing in the Laboratory

Author(s):  
T. Dauxois ◽  
E. Ermanyuk ◽  
C. Brouzet ◽  
S. Joubaud ◽  
I. Sibgatullin
Keyword(s):  
2019 ◽  
Vol 46 (2) ◽  
pp. 812-821
Author(s):  
Stephanie M. Downes ◽  
Bernadette M. Sloyan ◽  
Stephen R. Rintoul ◽  
John E. Lupton

2017 ◽  
Vol 122 (7) ◽  
pp. 5645-5651 ◽  
Author(s):  
Toshiyuki Hibiya ◽  
Takashi Ijichi ◽  
Robin Robertson

2020 ◽  
Vol 50 (1) ◽  
pp. 175-195 ◽  
Author(s):  
Xiaozhou Ruan ◽  
Jörn Callies

AbstractTo close the abyssal overturning circulation, dense bottom water has to become lighter by mixing with lighter water above. This diapycnal mixing is strongly enhanced over rough topography in abyssal mixing layers, which span the bottom few hundred meters of the water column. In particular, mixing rates are enhanced over mid-ocean ridge systems, which extend for thousands of kilometers in the global ocean and are thought to be key contributors to the required abyssal water mass transformation. To examine how stratification and thus diabatic transformation is maintained in such abyssal mixing layers, this study explores the circulation driven by bottom-intensified mixing over mid-ocean ridge flanks and within ridge-flank canyons. Idealized numerical experiments show that stratification over the ridge flanks is maintained by submesoscale baroclinic eddies and that stratification within ridge-flank canyons is maintained by mixing-driven mean flows. These restratification processes affect how strong a diabatic buoyancy flux into the abyss can be maintained, and they are essential for maintaining the dipole in water mass transformation that has emerged as the hallmark of a diabatic circulation driven by bottom-intensified mixing.


2018 ◽  
Vol 48 (9) ◽  
pp. 1995-2010 ◽  
Author(s):  
Jörn Callies

AbstractFor small-scale turbulence to achieve water mass transformation and thus affect the large-scale overturning circulation, it must occur in stratified water. Observations show that abyssal turbulence is strongly enhanced in the bottom few hundred meters in regions with rough topography, and it is thought that these abyssal mixing layers are crucial for closing and shaping the overturning circulation. If it were left unopposed, however, bottom-intensified turbulence would mix away the observed mixing-layer stratification over the course of a few years. It is proposed here that the homogenizing tendency of mixing may be balanced by baroclinic restratification. It is shown that bottom-intensified mixing, if it occurs on a large-scale topographic slope such as a midocean ridge flank, not only erodes stratification but also tilts isopycnals in the bottom few hundred meters. This tilting of isopycnals generates a reservoir of potential energy that can be tapped into by submesoscale baroclinic eddies. The eddies slide dense water under light water and thus restratify the mixing layer, similar to what happens in the surface mixed layer. This restratification is shown to be effective enough to balance the homogenizing tendency of mixing and to maintain the observed mixing-layer stratification. This suggests that submesoscale baroclinic eddies may play a crucial role in providing the stratification mixing can act on, thus allowing sustained water mass transformation. Through their restratification of abyssal mixing layers, submesoscale eddies may therefore directly affect the strength and structure of the abyssal overturning circulation.


2019 ◽  
Vol 49 (12) ◽  
pp. 3045-3060 ◽  
Author(s):  
Qi Quan ◽  
Huijie Xue

AbstractBy parameterizing the abyssal mixing as the exchange velocity (entrainment/detrainment) between the middle and deep layers of the South China Sea (SCS), its effects on the multilayer circulation are examined. Results indicate that the cyclonic circulation in the deep SCS appears only when the mixing induces an entrainment of at least 0.72 Sv (1 Sv ≡ 106 m3 s−1) from the deep to the middle layer, which is equivalent to a diapycnal diffusivity of 0.65 × 10−3 m2 s−1 or a net input rate of gravitational potential energy (GPE) of 6.89 GW, respectively. It is also found that tidal mixing in the SCS is stronger than the threshold for the generation of the cyclonic abyssal circulation, but the pattern and evolution of the deep circulation and meridional overturning circulation also depend on the spatiotemporal variability of the mixing. Moreover, the abyssal mixing is able to intensify the anticyclonic circulation in the middle layer but weaken the cyclonic circulation in the upper layer. Vorticity analysis suggests that the upward net flux induced by the abyssal mixing leads to vortex stretching (squeezing) and modulates the pressure gradient by redistributing the layer thickness, hence affects the pattern and strength of the circulation in the middle (deep) layer of the SCS, respectively. The depth-integrated effect of the thickness variation can modulate the pressure gradient across all layers and hence influence the upper-layer circulation.


2001 ◽  
Vol 31 (11) ◽  
pp. 3331-3348 ◽  
Author(s):  
Michele Y. Morris ◽  
Melinda M. Hall ◽  
Louis C. St. Laurent ◽  
Nelson G. Hogg
Keyword(s):  

2009 ◽  
Vol 39 (9) ◽  
pp. 2077-2096 ◽  
Author(s):  
Caroline J. Muller ◽  
Oliver Bühler

Abstract As part of an ongoing effort to develop a parameterization of wave-induced abyssal mixing, the authors derive an heuristic model for nonlinear wave breaking and energy dissipation associated with internal tides. Then the saturation and dissipation of internal tides for idealized and observed topography samples are investigated. One of the main results is that the wave-induced mixing could be more intense and more confined to the bottom than previously assumed in numerical models. Furthermore, in this model wave breaking and mixing clearly depend on the small scales of the topography below 10 km or so, which is below the current resolution of global bathymetry. This motivates the use of a statistical approach to represent the unresolved topography when addressing the role of internal tides in mixing the deep ocean.


2005 ◽  
Vol 35 (8) ◽  
pp. 1370-1381 ◽  
Author(s):  
A. M. Thurnherr ◽  
L. C. St. Laurent ◽  
K. G. Speer ◽  
J. M. Toole ◽  
J. R. Ledwell

Abstract To close the global overturning circulation, the production and sinking of dense water at high latitudes must be balanced elsewhere by buoyancy gain and upward vertical motion. Hydrographic and microstructure observations from the Brazil Basin in the South Atlantic Ocean indicate that most of the abyssal mixing there takes place on the topographically rough flank of the midocean ridge. In previous studies it has been suggested that the high level of abyssal mixing observed on the ridge flank is primarily caused by breaking internal waves forced by tidal currents. Here, the results from a detailed analysis of velocity, hydrographic, and microstructure data from a ridge-flank canyon are presented. Two-year-long current-meter records indicate that within the canyon there is a significant along-axial mean flow down the density gradient toward the ridge crest. Five hundred meters above the canyon floor the kinetic energy in the subinertial band exceeds that associated with the semidiurnal tides by approximately a factor of 2. The mean dissipation of kinetic energy inside the canyon exceeds that above the ridge-flank topography by approximately a factor of 5. The largest dissipation values were observed downstream of a narrow, 1000-m-high sill that extends across the full width of the canyon. Along the entire canyon, there is a strong association between the presence of sills and along-axial density gradients, while there is no similar association between the presence of depressions and density gradients. Together, these observations suggest that sill-related mixing contributes at least as much to the diapycnal buoyancy flux in the canyon as tidally forced internal-wave breaking, which is not expected to be associated preferentially with sills. While only ≈15% of the interfacial area between Antarctic Bottom Water and North Atlantic Deep Water in the Brazil Basin lie inside canyons, the available data suggest that approximately one-half of the diapycnal buoyancy fluxes take place there. In comparison, the region above the ridge-flank topography accounts for about one-third of the buoyancy fluxes. The apparent importance of sill-related processes for mixing in ridge-flank canyons is therefore of global significance, especially considering that such canyons occur on average every 50 km along 2/3 of the global midocean ridge system, and that sills partially block the canyon axes every few tens of kilometers.


2010 ◽  
Vol 40 (9) ◽  
pp. 2025-2042 ◽  
Author(s):  
Maxim Nikurashin ◽  
Raffaele Ferrari

Abstract Recent estimates from observations and inverse models indicate that turbulent mixing associated with internal wave breaking is enhanced above rough topography in the Southern Ocean. In most regions of the ocean, abyssal mixing has been primarily associated with radiation and breaking of internal tides. In this study, it is shown that abyssal mixing in the Southern Ocean can be sustained by internal waves generated by geostrophic motions that dominate abyssal flows in this region. Theory and fully nonlinear numerical simulations are used to estimate the internal wave radiation and dissipation from lowered acoustic Doppler current profiler (LADCP), CTD, and topography data from two regions in the Southern Ocean: Drake Passage and the southeast Pacific. The results show that radiation and dissipation of internal waves generated by geostrophic motions reproduce the magnitude and distribution of dissipation previously inferred from finescale measurements in the region, suggesting that it is one of the primary drivers of abyssal mixing in the Southern Ocean.


Sign in / Sign up

Export Citation Format

Share Document