Thermohaline Structure and Salt Fingering in the Lomonosov Equatorial Undercurrent as Observed in April 2017

Author(s):  
Tatiana A. Demidova
2006 ◽  
Vol 36 (4) ◽  
pp. 739-751 ◽  
Author(s):  
Gregory C. Johnson

Abstract Generation and evolution of an isopycnal potential temperature–salinity (θ–S), or spiciness, anomaly is studied around 20°–23°S, 110°W in the austral winter of 2004. Two profiling CTD floats deployed in the region in January 2004 provide the observations. The anomaly (defined as relative to water properties of the preceding summer) is very large (initially about 0.35 in S and about 0.9°C in θ). It is associated with the winter ventilation of a thick, low-potential-vorticity layer known as South Pacific Eastern Subtropical Mode Water. Regional lateral θ and S distributions at the surface predispose the ocean to formation of this water mass and allow significant anomalies to be generated there with relative ease. The water mass is potentially important for climate in that, after northwestward advection in the South Equatorial Current, it contributes to the Equatorial Undercurrent and eventually resurfaces in the cold tongue of the eastern equatorial Pacific Ocean. The anomaly studied is strong enough to predispose a portion of the water column to salt fingering, increasing vertical mixing. Although lateral processes are no doubt important in evolution of the anomaly, the vertical mixing appears to be sufficiently vigorous to reduce it significantly within 6 months after its formation by spreading it to denser horizons through diapycnal fluxes. By that time the anomaly is most likely sufficiently diffuse so that subsequent evolution from diapycnal fluxes is significantly reduced as it makes its way toward the equator.


Tellus ◽  
1955 ◽  
Vol 7 (4) ◽  
pp. 518-521 ◽  
Author(s):  
N. P. Fofonoff ◽  
R. B. Montgomery

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


2010 ◽  
Vol 40 (4) ◽  
pp. 685-712 ◽  
Author(s):  
William D. Smyth ◽  
Barry Ruddick

Abstract In this paper the authors investigate the action of ambient turbulence on thermohaline interleaving using both theory and numerical calculations in combination with observations from Meddy Sharon and the Faroe Front. The highly simplified models of ambient turbulence used previously are improved upon by allowing turbulent diffusivities of momentum, heat, and salt to depend on background gradients and to evolve as the instability grows. Previous studies have shown that ambient turbulence, at typical ocean levels, can quench the thermohaline interleaving instability on baroclinic fronts. These findings conflict with the observation that interleaving is common in baroclinic frontal zones despite ambient turbulence. Another challenge to the existing theory comes from numerical experiments showing that the Schmidt number for sheared salt fingers is much smaller than previously assumed. Use of the revised value in an interleaving calculation results in interleaving layers that are both weaker and thinner than those observed. This study aims to resolve those paradoxes. The authors show that, when turbulence has a Prandtl number greater than unity, turbulent momentum fluxes can compensate for the reduced Schmidt number of salt fingering. Thus, ambient turbulence determines the vertical scale of interleaving. In typical oceanic interleaving structures, the observed property gradients are insufficient to predict interleaving growth at an observable level, even when improved turbulence models are used. The deficiency is small, though: gradients sharper by a few tens of percent are sufficient to support instability. The authors suggest that this is due to the efficiency of interleaving in erasing those property gradients. A new class of mechanisms for interleaving, driven by flow-dependent fluctuations in turbulent diffusivities, is identified. The underlying mechanism is similar to the well-known Phillips layering instability; however, because of Coriolis effects, it has a well-defined vertical scale and also a tilt angle opposite to that of finger-driven interleaving.


2011 ◽  
Vol 116 (C12) ◽  
Author(s):  
Mélanie Grenier ◽  
Sophie Cravatte ◽  
Bruno Blanke ◽  
Christophe Menkes ◽  
Ariane Koch-Larrouy ◽  
...  

Science ◽  
1983 ◽  
Vol 222 (4628) ◽  
pp. 1121-1123 ◽  
Author(s):  
E. FIRING ◽  
R. LUKAS ◽  
J. SADLER ◽  
K. WYRTKI

Author(s):  
Lourval dos Santos Silva ◽  
Luiz Bruner de Miranda ◽  
Belmiro Mendes de Castro Filho

Sign in / Sign up

Export Citation Format

Share Document