Long-Term Climate Change Mitigation in Kazakhstan in a Post Paris Agreement Context

Author(s):  
Aiymgul Kerimray ◽  
Bakytzhan Suleimenov ◽  
Rocco De Miglio ◽  
Luis Rojas-Solórzano ◽  
Brian Ó Gallachóir
AJIL Unbound ◽  
2018 ◽  
Vol 112 ◽  
pp. 274-278
Author(s):  
Jean Galbraith

President Trump has done the impossible: he has made the international community enthusiastic about U.S. federalism. Even as they express dismay at Trump's plan to abandon the Paris Agreement, foreign leaders and internationalists have praised the efforts of  U.S. states and cities to combat climate change mitigation in accordance with the Agreement's goals. These leaders are responding to what I will call the outer face of foreign affairs federalism—the direct international engagement undertaken by U.S. states and cities. This outer face has gained visibility in recent years, spurred on not only by the exigencies of climate but also by developments in legal practice. Less noticed internationally but of great practical importance is the inner face of foreign affairs federalism—the ways in which U.S. states and cities interact with the federal government. In this contribution, I first describe these two faces of foreign affairs federalism as they relate to climate and then suggest some ways in which foreign leaders and internationalists could expand the outer face and respond to the inner face.


2018 ◽  
Vol 25 (1) ◽  
pp. 120 ◽  
Author(s):  
Alexander Dunlap

Providing a glimpse into the reality of wind energy development, the story of Álvaro Obregón is one of resistance. Álvaro Obregón is a primarily Zapotec semi-subsistence community located near the entrance of the Santa Teresa sand bar (Barra), where in 2011 Mareña Renovables initiated the process of building 102 wind turbines. Demonstrating the complicated micro-politics of land acquisition, conflict and unrest, this article argues that climate change mitigation initiatives are sparking land grabs and conflict with the renewed valuation of wind resources. Insurrection against the Mareña Renovables wind project has spawned a long-term conflict, which has created social divisions and a type of low-intensity civil war within the town. This article will chronicle the uprising against the wind company, battles with police, and the town hall takeover, which includes analyzing the conflict taking place between the cabildo comunitario and the constitucionalistas. Subsequent sections examine the different perspectives within the village and how this battle between the Communitarians and the wind company continues today. The article reveals the complications associated with land deals, the conflict generating potential of climate change mitigation practices and, finally, concludes by reflecting on the difficulties of formulating alternatives to development within a conflict situation.


2019 ◽  
Vol 5 (9) ◽  
pp. eaau2406 ◽  
Author(s):  
Miroslav Trnka ◽  
Song Feng ◽  
Mikhail A. Semenov ◽  
Jørgen E. Olesen ◽  
Kurt Christian Kersebaum ◽  
...  

Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near-simultaneous droughts across key world wheat-producing areas.


2015 ◽  
Vol 6 (2) ◽  
pp. 447-460 ◽  
Author(s):  
K. Frieler ◽  
A. Levermann ◽  
J. Elliott ◽  
J. Heinke ◽  
A. Arneth ◽  
...  

Abstract. Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.


2015 ◽  
Vol 153 (7) ◽  
pp. 1151-1173 ◽  
Author(s):  
S. MANGALASSERY ◽  
S. SJÖGERSTEN ◽  
D. L. SPARKES ◽  
S. J. MOONEY

SUMMARYThe benefits of reduced and zero-tillage systems have been presented as reducing runoff, enhancing water retention and preventing soil erosion. There is also general agreement that the practice can conserve and enhance soil organic carbon (C) levels to some extent. However, their applicability in mitigating climate change has been debated extensively, especially when the whole profile of C in the soil is considered, along with a reported risk of enhanced nitrous oxide (N2O) emissions. The current paper presents a meta-analysis of existing literature to ascertain the climate change mitigation opportunities offered by minimizing tillage operations. Research suggests zero tillage is effective in sequestering C in both soil surface and sub-soil layers in tropical and temperate conditions. The C sequestration rate in tropical soils can be about five times higher than in temperate soils. In tropical soils, C accumulation is generally correlated with the duration of tillage. Reduced N2O emissions under long-term zero tillage have been reported in the literature but significant variability exists in the N2O flux information. Long-term, location-specific studies are needed urgently to determine the precise role of zero tillage in driving N2O fluxes. Considering the wide variety of crops utilized in zero-tillage studies, for example maize, barley, soybean and winter wheat, only soybean has been reported to show an increase in yield with zero tillage (7·7% over 10 years). In several cases yield reductions have been recorded e.g. c. 1–8% over 10 years under winter wheat and barley, respectively, suggesting zero tillage does not bring appreciable changes in yield but that the difference between the two approaches may be small. A key question that remains to be answered is: are any potential reductions in yield acceptable in the quest to mitigate climate change, given the importance of global food security?


2021 ◽  
Vol 16 (2) ◽  
pp. 347-353
Author(s):  
Masahiro Sugiyama ◽  
Shinichiro Fujimori ◽  
Kenichi Wada ◽  
John Weyant

Sign in / Sign up

Export Citation Format

Share Document