scholarly journals Epilogue: The Innate Immune System: A Global Player in Health and Disease

Author(s):  
Walter Gottlieb Land
2007 ◽  
Vol 5 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Suryaprakash Sambhara ◽  
Robert I Lehrer

2011 ◽  
Vol 121 (10) ◽  
pp. 415-426 ◽  
Author(s):  
Ruth Broering ◽  
Mengji Lu ◽  
Joerg F. Schlaak

TLRs (Toll-like receptors), as evolutionarily conserved germline-encoded pattern recognition receptors, have a crucial role in early host defence by recognizing so-called PAMPs (pathogen-associated molecular patterns) and may serve as an important link between innate and adaptive immunity. In the liver, TLRs play an important role in the wound healing and regeneration processes, but they are also involved in the pathogenesis and progression of various inflammatory liver diseases, including autoimmune liver disease, alcoholic liver disease, non-alcoholic steatohepatitis, fibrogenesis, and chronic HBV (hepatitis B virus) and HCV (hepatitis C virus) infection. Hepatitis viruses have developed different evading strategies to subvert the innate immune system. Thus recent studies have suggested that TLR-based therapies may represent a promising approach in the treatment in viral hepatitis. The present review focuses on the role of the local innate immune system, and TLRs in particular, in the liver.


2017 ◽  
Author(s):  
Daniel Rico ◽  
Joost HA Martens ◽  
Kate Downes ◽  
Enrique Carrillo-de-Santa-Pau ◽  
Vera Pancaldi ◽  
...  

ABSTRACTNeutrophils and monocytes provide a first line of defense against infections as part of the innate immune system. Here we report the integrated analysis of transcriptomic and epigenetic landscapes for circulating monocytes and neutrophils with the aim to enable downstream interpretation and functional validation of key regulatory elements in health and disease. We collected RNA-seq data, ChIP-seq of six histone modifications and of DNA methylation by bisulfite sequencing at base pair resolution from up to 6 individuals per cell type. Chromatin segmentation analyses suggested that monocytes have a higher number of cell-specific enhancer regions (4-fold) compared to neutrophils. This highly plastic epigenome is likely indicative of the greater differentiation potential of monocytes into macrophages, dendritic cells and osteoclasts. In contrast, most of the neutrophil-specific features tend to be characterized by repressed chromatin, reflective of their status as terminally differentiated cells. Enhancers were the regions where most of differences in DNA methylation between cells were observed, with monocyte-specific enhancers being generally hypomethylated. Monocytes show a substantially higher gene expression levels than neutrophils, in line with epigenomic analysis revealing that gene more active elements in monocytes. Our analyses suggest that the overexpression of c-Myc in monocytes and its binding to monocyte-specific enhancers could be an important contributor to these differences. Altogether, our study provides a comprehensive epigenetic chart of chromatin states in primary human neutrophils and monocytes, thus providing a valuable resource for studying the regulation of the human innate immune system.


2006 ◽  
Vol 41 (3) ◽  
pp. 261-266 ◽  
Author(s):  
M. Angeles Esteban ◽  
Alberto Cuesta ◽  
Alejandro Rodriguez ◽  
Jose Meseguer

2016 ◽  
Vol Volume 112 (Number 1/2) ◽  
Author(s):  
Jan G. Nel ◽  
Annette J. Theron ◽  
Roger Pool ◽  
Chrisna Durandt ◽  
Gregory R. Tintinger ◽  
...  

Abstract The human innate immune system is indispensable for protection against potentially invasive microbial and viral pathogens, either neutralising them or containing their spread until effective mobilisation of the slower, adaptive (specific), immune response. Until fairly recently, it was believed that the human innate immune system possessed minimal discriminatory activity in the setting of a rather limited range of microbicidal or virucidal mechanisms. However, recent discoveries have revealed that the innate immune system possesses an array of novel pathogen recognition mechanisms, as well as a resourceful and effective alternative mechanism of phagocyte (predominantly neutrophil)-mediated, anti-infective activity known as NETosis. The process of NETosis involves an unusual type of programmed, purposeful cell death, resulting in the extracellular release of a web of chromatin heavily impregnated with antimicrobial proteins. These structures, known as neutrophil extracellular traps (NETs), immobilise and contribute to the eradication of microbial pathogens, ensuring that the anti-infective potential of neutrophils is sustained beyond the lifespan of these cells. The current review is focused on the mechanisms of NETosis and the role of this process in host defence. Other topics reviewed include the potential threats to human health posed by poorly controlled, excessive formation of NETs, specifically in relation to development of autoimmune and cardiovascular diseases, as well as exacerbation of acute and chronic inflammatory disorders of the airways.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Nicholas Hanan ◽  
Ronnie L. Doud ◽  
In-Woo Park ◽  
Harlan P. Jones ◽  
Stephen O. Mathew

The innate immune system is important for initial antiviral response. SARS-CoV-2 can result in overactivity or suppression of the innate immune system. A dysregulated immune response is associated with poor outcomes; with patients having significant Neutrophil-to-Lymphocyte ratios (NLR) due to neutrophilia alongside lymphopenia. Elevated interleukin (IL)-6 and IL-8 leads to overactivity and is a prominent feature of severe COVID-19 patients. IL-6 can result in lymphopenia; where COVID-19 patients typically have significantly altered lymphocyte subsets. IL-8 attracts neutrophils; which may play a significant role in lung tissue damage with the formation of neutrophil extracellular traps leading to cytokine storm or acute respiratory distress syndrome. Several factors like pre-existing co-morbidities, genetic risks, viral pathogenicity, and therapeutic efficacy act as important modifiers of SARS-CoV-2 risks for disease through an interplay with innate host inflammatory responses. In this review, we discuss the role of the innate immune system at play with other important modifiers in SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document