The Impact of Tenaga Suria Brunei Power Plant on Natural Gas Saving and CO2 Avoidance

Author(s):  
Muhammad Nabih Fakhri Matussin
Keyword(s):  
Author(s):  
Cássio Florisbal de Almeida ◽  
Vinícius Gonçalves Maciel ◽  
Luiz Fernando de Abreu Cybis

O setor energético é de suma importância para o crescimento estratégico de qualquer país. Isso não é diferente no Brasil, o qual apresenta uma matriz energética diversificada, mas que tem um predomínio do setor hidrelétrico. No entanto, o setor termelétrico tem crescido nos últimos anos para garantir a segurança energética e, nos sistemas isolados, a termeletricidade é predominante. Este é o caso do estado do Amazonas, o qual recebe energia prioritariamente de usinas termelétricas da região. As usinas da região utilizam, em sua maioria, combustíveis fósseis tais como diesel, óleo combustível pesado (HFO, em inglês). Atualmente, tem sido incorporada a este sistema a utilização do gás natural proveniente da bacia petrolífera amazônica, localizada em Urucu. Nesse sentido, para analisar a influência ambiental desta mudança nas usinas termelétricas, este emprega a metodologia de Avaliação do Ciclo de Vida (ACV) da eletricidade entregue ao grid por uma usina termelétrica, localizada em Manaus, que utiliza óleo combustível pesado e gás natural como combustível. O estudo foi conduzido do berço ao portão da usina a partir de dados primários da própria usina e dados secundários de bibliografia da área. Para a observação das diferenças, fez-se um estudo comparativo entre a mesma usina em duas situações: utilizando somente óleo combustível pesado e o uso concomitante deste combustível com o gás natural. A Avaliação do Impacto de Ciclo de Vida foi calculada pelo método CML IA baseline com o uso do software SimaPro e escolheu-se a categoria de impacto de Aquecimento Global para análise. A conversão bicombustível resultou em redução do impacto da usina, que antes era de 590,50 kg CO2eq/MWh e passou para 521,11 CO2eq/MWh, no entanto ao longo do ciclo de vida o resultado se manteve no mesmo patamar. Resumen El sector energético es de suma importancia para el crecimiento estratégico de cualquier país. Esto no es diferente en Brasil, que tiene una matriz energética diversificada, pero que tiene un predominio del sector hidroeléctrico. Sin embargo, el sector termoeléctrico ha crecido en los últimos años para garantizar la seguridad energética y, en sistemas aislados, termoelectricidad es predominante. Este es el caso de estado del Amazonas, que recibe energía principalmente de centrales térmicas de energía en la región. Las plantas de la región utilizan, sobre todo, combustibles fósiles como el diesel, fuelóleo pesado (HFO en inglés). En la actualidad, se ha incorporado a este sistema, el uso de gas natural de la cuenca petrolífera del Amazonas, situado en Urucu. En este sentido, para analizar el impacto ambiental de este cambio en las centrales térmicas, este estudio emplea la metodología del Análisis de Ciclo de Vida (ACV) de la electricidad entregada a la red por una central térmica, que se encuentra en Manaus, que utiliza fuelóleo pesado y gas natural como combustibles. El estudio se realizó a partir de datos primarios de la central térmica y datos secundarios de literatura del área. Para observar las diferencias, se hizo un estudio comparativo de la misma planta en dos situaciones: utilizando sólo el fuelóleo pesado y el uso concomitante de este combustible con gas natural. La evaluación del impacto del ciclo de vida se calculó por el método de CML IA baseline usando el software SimaPro y optó por categoría de impacto del calentamiento global para análisis. La conversión bi-combustible resultó en una redución del impacto de la planta, que antes era de 590.50 kg CO2eq / MWh y aumentó a 521.11 CO2eq / MWh. Sin embargo a lo largo del ciclo de vida, el resultado se mantuvo en el mismo nivel. Abstract The electric sector is very important to the strategic growing of any country. It isn’t different in Brazil, which shows a diversified energy matrix, but has a predominance of hydropower sector. However, the thermoelectric sector has grown in the last years to guarantee the electrical safety and, in isolated systems, the thermoelectricity is predominant. It is the case of Amazonas State, which receives energy priority from thermal power plants in the region. They use, mostly, fossil fuels such as Diesel, Heavy Fuel Oil (HFO). Nowadays, it has been incorporated into this system the natural gas use from Amazon oil basin, located in Urucu. In this sense, to analyze the environmental influence of this change on the thermal power plants, this study intends to employ the methodology of Life Cycle Assessment (LCA) of the electricity delivered to the grid by one thermal power plant (TPP), located in Manaus, which uses HFO and Natural Gas as fuel. For observation of differences, it was performed a comparative study of this power plant in two situations: using only HFO and using HFO and Natural gas concomitant. The study was conducted from cradle to gate of the power plant from specific primary data, provided by the power plant and secondary data from the literature. The Life Cycle Impact Assessment (LCIA) was calculated from the CML IA baseline with the use of SimaPro software and it was chosen the impact category of Global Warming Potential (GWP) for analysis. The conversion bifuel resulted in reduction of the impact of the TPP, which previously was 590.50 kg CO2eq / MWh and passed to 521.11 CO2eq / MWh. However, the bifuel power plant has, along the lifecycle, when compared the operation with only HFO, the same magnitude of GWP due to contributions of, for example, natural gas production.


2016 ◽  
Vol 192 ◽  
pp. 437-457 ◽  
Author(s):  
Rosario Porrazzo ◽  
Graeme White ◽  
Raffaella Ocone

Among the well-known state-of-the-art technologies for CO2 capture, Chemical Looping Combustion (CLC) stands out for its potential to capture CO2 efficiently from a fuel power plant. CLC involves the combustion of carbonaceous fuel such as coal-derived syngas or natural gas via a redox chemical reaction with a solid oxygen carrier circulating between two fluidised beds. Avoided NOx emissions, high CO2 capture and thermal efficiency are the key concepts that make worth the investigation of this technology. One of the main issues about CLC might concern the impact of the solid metal oxides price and lifetime on the Levelised Cost Of the Electricity (LCOE). A natural gas fired power plant embedding a CLC unit is presented in this work. Detailed fluidised bed models are implemented in Aspen Plus software. Kinetics and hydrodynamics are taken into account to evaluate their effect on the total solid inventory required for full fuel conversion. The models are incorporated into a power plant and a detailed economic evaluation is undertaken by varying two relevant parameters: fuel price and lifetime of the solid particles. The effect of these parameters on the LCOE is investigated and a comparison between CLC and a post-combustion technology employing amines (e.g. monoethanolamine, MEA) is presented. It is shown that the CLC power plant under study leads to a lower LCOE compared to the current MEA post-combustion solution.


2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


Sign in / Sign up

Export Citation Format

Share Document