Techno-economic investigation of a chemical looping combustion based power plant

2016 ◽  
Vol 192 ◽  
pp. 437-457 ◽  
Author(s):  
Rosario Porrazzo ◽  
Graeme White ◽  
Raffaella Ocone

Among the well-known state-of-the-art technologies for CO2 capture, Chemical Looping Combustion (CLC) stands out for its potential to capture CO2 efficiently from a fuel power plant. CLC involves the combustion of carbonaceous fuel such as coal-derived syngas or natural gas via a redox chemical reaction with a solid oxygen carrier circulating between two fluidised beds. Avoided NOx emissions, high CO2 capture and thermal efficiency are the key concepts that make worth the investigation of this technology. One of the main issues about CLC might concern the impact of the solid metal oxides price and lifetime on the Levelised Cost Of the Electricity (LCOE). A natural gas fired power plant embedding a CLC unit is presented in this work. Detailed fluidised bed models are implemented in Aspen Plus software. Kinetics and hydrodynamics are taken into account to evaluate their effect on the total solid inventory required for full fuel conversion. The models are incorporated into a power plant and a detailed economic evaluation is undertaken by varying two relevant parameters: fuel price and lifetime of the solid particles. The effect of these parameters on the LCOE is investigated and a comparison between CLC and a post-combustion technology employing amines (e.g. monoethanolamine, MEA) is presented. It is shown that the CLC power plant under study leads to a lower LCOE compared to the current MEA post-combustion solution.

Author(s):  
Bilal Hassan ◽  
Tariq Shamim ◽  
Ahmed F. Ghoniem

A thermodynamic model and parametric analysis of a natural gas fired power plant with carbon dioxide (CO2) capture using multi-stage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing suitable metal oxide which acts as an oxygen-carrier that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all the components of the CLC system. In the analysis, equilibrium based thermodynamic reactions with no oxygen-carrier deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel and oxygen carrier (OC) mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas fired power plant with multi-stage CLC. Results of these parameters on the plant efficiency are presented. The analysis shows efficiency gain of more than 6% over that of conventional power plant with CO2 capture technologies when CLC is integrated with the power plant.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


2021 ◽  
Author(s):  
Basavaraja Revappa Jayadevappa

Abstract Operation of power plants in carbon dioxide capture and non-capture modes and energy penalty or energy utilization in such operations are of great significance. This work reports on two gas fired pressurized chemical-looping combustion power plant lay-outs with two inbuilt modes of flue gas exit namely, with carbon dioxide capture mode and second mode is letting flue gas (consists carbon dioxide and water) without capturing carbon dioxide. In the non-CCS mode, higher thermal efficiencies of 54.06% and 52.63% efficiencies are obtained with natural gas and syngas. In carbon capture mode, a net thermal efficiency of 52.13% is obtained with natural gas and 48.78% with syngas. The operating pressure of air reactor is taken to be 13 bar for realistic operational considerations and that of fuel reactor is 11.5 bar. Two power plant lay-outs developed based combined cycle CLC mode for natural gas and syngas fuels. A single lay-out is developed for two fuels with possible retrofit for dual fuel operation. The CLC Power plants can be operated with two modes of flue gas exit options and these operational options makes them higher thermal efficient power plants.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Oghare Victor Ogidiama ◽  
Mohammad Abu Zahra ◽  
Tariq Shamim

High energy penalty and cost are major obstacles in the widespread use of CO2 capture techniques for reducing CO2 emissions. Chemical looping combustion (CLC) is an innovative means of achieving CO2 capture with less cost and low energy penalty. This paper conducts a detailed techno-economic analysis of a natural gas-fired CLC-based power plant. The power plant capacity is 1000 MWth gross power on a lower heating value basis. The analysis was done using Aspen Plus. The cost analysis was done by considering the plant location to be in the United Arab Emirates. The plant performance was analyzed by using the cost of equipment, cost of electricity, payback period, and the cost of capture. The performance of the CLC system was also compared with a conventional natural gas combined cycle plant of the same capacity integrated with post combustion CO2 capture technology. The analysis shows that the CLC system had a plant efficiency of 55.6%, electricity cost of 5.5 cents/kWh, payback time of 3.77 years, and the CO2 capture cost of $27.5/ton. In comparison, a similar natural gas combined cycle (NGCC) power plant with CO2 capture had an efficiency of 50.6%, cost of electricity of 6.1 cents/kWh, payback period of 4.57 years, and the capture cost of $42.9/ton. This analysis shows the economic advantage of the CLC integrated power plants.


Fuel ◽  
2010 ◽  
Vol 89 (11) ◽  
pp. 3399-3409 ◽  
Author(s):  
Cristina Dueso ◽  
Alberto Abad ◽  
Francisco García-Labiano ◽  
Luis F. de Diego ◽  
Pilar Gayán ◽  
...  

2021 ◽  
Vol 286 ◽  
pp. 116507
Author(s):  
Ranjani Siriwardane ◽  
Jarrett Riley ◽  
William Benincosa ◽  
Samuel Bayham ◽  
Michael Bobek ◽  
...  

2021 ◽  
Vol 222 ◽  
pp. 106962
Author(s):  
Stefan Mayrhuber ◽  
Fredrik Normann ◽  
Duygu Yilmaz ◽  
Henrik Leion

Sign in / Sign up

Export Citation Format

Share Document