scholarly journals Dynamics of Contour Motion of Belt Drive by Means of Nonlinear Rod Approach

Author(s):  
Alexander K. Belyaev ◽  
Vladimir V. Eliseev ◽  
Hans Irschik ◽  
Evgenii A. Oborin
Keyword(s):  
Author(s):  
Jakob Scheidl ◽  
Yury Vetyukov ◽  
Christian Schmidrathner ◽  
Klemens Schulmeister ◽  
Michael Proschek

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jianneng Chen ◽  
Xincheng Sun ◽  
Chuanyu Wu ◽  
Dadu Xiao ◽  
Jun Ye

AbstractThe noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields. Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China, whereas two pulley noncircular synchronous belt transmissions have been developed overseas. However, owing to the noncircular characteristics of the belt pulley, the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant, resulting in high probabilities of skipping and vibration. In this study, a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning, with no skipping; hence, the non-uniform output characteristic of the driven pulley is consistent with the theoretical value. In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism, the pitch curve of the driving synchronous belt pulley is circular, whereas those of the driven synchronous belt and tensioning pulleys are noncircular. To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley, an automatic optimization model of the tensioning pulley pitch curve is established. The motion simulation, analysis, and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written, and the variation in belt length slack under different speed ratios is analyzed based on several examples. The testbed for a circular–noncircular–noncircular three-pulley noncircular synchronous belt transmission mechanism is developed. The test shows that the three-pulley noncircular synchronous belt drives well. This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism; it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.


1970 ◽  
Vol 12 (12) ◽  
pp. 1053-1063 ◽  
Author(s):  
T.C. Firbank
Keyword(s):  

2000 ◽  
Vol 123 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Lixin Zhang ◽  
Jean W. Zu ◽  
Zhichao Hou

A linear damped hybrid (continuous/discrete components) model is developed in this paper to characterize the dynamic behavior of serpentine belt drive systems. Both internal material damping and external tensioner arm damping are considered. The complex modal analysis method is developed to perform dynamic analysis of linear non-self-adjoint hybrid serpentine belt-drive systems. The adjoint eigenfunctions are acquired in terms of the mode shapes of an auxiliary hybrid system. The closed-form characteristic equation of eigenvalues and the exact closed-form solution for dynamic response of the non-self-adjoint hybrid model are obtained. Numerical simulations are performed to demonstrate the method of analysis. It is shown that there exists an optimum damping value for each vibration mode at which vibration decays the fastest.


2013 ◽  
Vol 389 ◽  
pp. 953-956
Author(s):  
Xian Zhang Feng ◽  
Yan Mei Cui ◽  
Li Hong Yu ◽  
Zhi Qiang Jiang ◽  
Jun Wei Cheng ◽  
...  

In order to the integrated design of the geometric parameters and drawing the pulley parts, based on R & D platform of the VBA with the CAD software, hence after analyzing the selection belt type, determine the reference diameter of the belt pulley, choosing length and the amount of the belt, and designing and drawing the pulley parts, in which include the drawing the tooth of v belt pulley, chamfers and grooves, keyway, hatches, and part dimension, etc. Conventional belt drive system is successfully developed. The design results show that the program is running smoothly, the result is correct with the friendly interface, it can provide a convenient tool to rapidly design of project for the belt drive system.


1988 ◽  
Vol 110 (4) ◽  
pp. 472-481 ◽  
Author(s):  
D. C. Sun

A model of the metal V-belt drive (MBD), considering its detailed multiple-band and metal-block structure, and the ratio-change effect during its operation, is constructed and analyzed. A computational scheme is devised that adapts the analysis to the computation of the MBD’s performance for any specified drive-schedule. General performance characteristics of the MBD and an example illustrating its response to a given drive-schedule are presented. The use of the analysis and the computational scheme in the design of the MBD and in finding the optimum operating conditions is discussed.


1971 ◽  
Vol 37 (293) ◽  
pp. 203-211
Author(s):  
Aizoh KUBO ◽  
Toshiaki ANDO ◽  
Susumu SATO ◽  
Toshio AIDA ◽  
Takeshi HOSHIRO

Sign in / Sign up

Export Citation Format

Share Document