High-precision position control of belt drive system based on OPC communication

Author(s):  
Wei Liu ◽  
Ping Wan ◽  
Jin Cheng ◽  
Yongheng Ma ◽  
Cheng Jing
2013 ◽  
Vol 389 ◽  
pp. 953-956
Author(s):  
Xian Zhang Feng ◽  
Yan Mei Cui ◽  
Li Hong Yu ◽  
Zhi Qiang Jiang ◽  
Jun Wei Cheng ◽  
...  

In order to the integrated design of the geometric parameters and drawing the pulley parts, based on R & D platform of the VBA with the CAD software, hence after analyzing the selection belt type, determine the reference diameter of the belt pulley, choosing length and the amount of the belt, and designing and drawing the pulley parts, in which include the drawing the tooth of v belt pulley, chamfers and grooves, keyway, hatches, and part dimension, etc. Conventional belt drive system is successfully developed. The design results show that the program is running smoothly, the result is correct with the friendly interface, it can provide a convenient tool to rapidly design of project for the belt drive system.


2013 ◽  
Vol 303-306 ◽  
pp. 1657-1660
Author(s):  
Zhi Guang Zhang ◽  
Wei Hu ◽  
Xiao Qiong Li ◽  
Xue Fei Lv ◽  
Min Ping Zhang ◽  
...  

For the precision rotor position control of stream selector, a control system based on direct current motor (DC motor) has been constructed. The DC motor, with a high-precision incremental encoder used as the driving force, was assembled with the stream selector rotor through a shaft coupling. Following the motor rotation, the encoder generated two-channel quadrature pulses and one channel index pulses. An ultralow-power consumption microcontroller (msp430f2232) received theses pulses and calculated them. The position of the slot was determined by the number of pulses counted from the index pulse. Operator can set and monitored the slot positions of five stream selectors simultaneously through the program which was written with LabVIEW on the host computer. This module featured high reliability and low power consumption compared with the one driven by step motor. Beyond that, it was much smaller and lighter.


Author(s):  
Chengyong Zhang ◽  
Yaolong Chen

In this paper, the active-disturbance-rejection control (ADRC) is applied to realize the high-precision tracking control of CNC machine tool feed drives. First, according to the number of the feedback channel, the feed systems are divided into two types: signal-feedback system, e.g., linear motor and rotary table, and double-feedback system, e.g., ball screw feed drive with a load/table position feedback. Then, the appropriate controller is designed to ensure the closed-loop control performance of each type of system based on the idea of ADRC. In these control frameworks, the extended state observers (ESO) estimate and compensate for unmodeled dynamics, parameter perturbations, variable cutting load, and other uncertainties. For the signal-feedback system, the modified ADRC with an acceleration feedforward term is used directly to regulate the load/table position response. However, for the double-feedback system, the ADRC is applied only to the motor position control, and a simple PI controller is used to achieve the accurate position control of the load. In addition, based on ADRC feedback linearization, a novel equivalent-error-model based feedforward controller is designed to further improve the command following performance of the double-feedback system. The experimental results demonstrate that the proposed controllers of both systems have better tracking performance and robustness against the external disturbance compared with the conventional P-PI controller.


Author(s):  
Yingdan Wu ◽  
Michael Varenberg ◽  
Michael J. Leamy

We study the dynamic behavior of a belt-drive system to explore the effect of operating conditions and system moment of inertia on the generation of waves of detachment (i.e., Schallamach waves) at the belt-pulley interface. A self-excitation phenomenon is reported in which frictional fluctuations serve as harmonic forcing of the pulley, leading to angular velocity oscillations which grow in time. This behavior depends strongly on operating conditions (torque transmitted and pulley speed) and system inertia, and differs between the driver and driven pulleys. A larger net torque applied to the pulley generally yields more remarkable stick-slip oscillations with higher amplitude and lower frequency. Higher driving speeds accelerate the occurrence of stick-slip motion, but have little influence on the oscillation amplitude. Contrary to our expectations, the introduction of flywheels to increase system inertia amplified the frictional disturbances, and hence the pulley oscillations. This does, however, suggest a way of facilitating their study, which may be useful in follow-on research.


2021 ◽  
Author(s):  
Zhengtao Hu ◽  
Weiwei Wan ◽  
Keisuke Koyama ◽  
Kensuke Harada

This paper presented an regrasp planning method to eliminate grasp uncertainty while considering the geometric constraints of a fixture. The method automatically finds the Stable Placement Poses (SPPs) of an object on a Triangular Corner Fixture (TCF), elevates the object from its SPPs to dropping poses and finds the Deterministic Dropping Poses (DDPs), builds regrasp graphs by using the SPP-DDP pairs and their associated grasp configurations, and searches the graph to find regrasp motion sequences for precise assembly. Since the SPPs and their associated regrasps are constrained by the TCF's geometry and have high precision, the final object poses regrasped via it has low uncertainty and can be directly used for assembly by position control. In the experimental section, we study the performance of analytical and learning-based methods for estimating the DDPs of different objects and quantitatively examine the proposed method's ability to suppress uncertainty using assembly tasks like peg-in-hole insertion and sheathing tubes, aligning holes, mounting bearing housings, etc. The results demonstrate the method's robustness and efficacy.


2020 ◽  
pp. 002029402094497
Author(s):  
Shi Yaochen ◽  
Zhao Tianxiang ◽  
Chen Guoping ◽  
Li Zhanguo ◽  
Tang Wusheng

This paper analyzed the noise distribution of three pulleys and one belt system theoretically and experimentally. Aiming at the influence of the tensioner on the transmission noise of the synchronous belt, on the premise of theoretical analysis of the influence of the tensioner on the transmission noise of the synchronous belt, the noise test of the synchronous belt transmission system with and without the tensioner was carried out under the same experimental conditions. Based on the principle of acoustic array measurement, a three-pulley and one belt noise test device was designed. The noise pressure distribution nephogram and amplitude–frequency characteristic curve were obtained by noise tests at different speeds. Through the comparison of the results of two groups of tests, the influence rule of the tensioner on the transmission noise of the synchronous belt was obtained. The results show that the tensioner can effectively avoid the resonance of the synchronous belt, and the noise amplitude of the three-pulley and one belt drive system is 3 dB higher after the tensioner is installed. It provides a basis for vibration and noise reduction of the engine timing transmission system.


2008 ◽  
Vol 128 (9) ◽  
pp. 1114-1120
Author(s):  
Kazuhiro Tsuruta ◽  
Kazuya Sato ◽  
Nobuhiro Ushimi ◽  
Takashi Fujimoto

Sign in / Sign up

Export Citation Format

Share Document