Optimization in Relative Scale

Author(s):  
Yurii Nesterov
Keyword(s):  
2013 ◽  
Vol 740 ◽  
pp. 99-104
Author(s):  
Phuong Hoai Le ◽  
Thien Xuan Dinh ◽  
Atsushi Mitani ◽  
Shinichi Hirai

In this work, we study experimentally the effect of the geometry parameters of saw-tooth surface and micro-part on the motion of micro-parts. The experiments are performed for a range of saw-tooth pitch,p, micro-part length,l, and exciting frequency applied to the surface,f. By the use of particle tracking velocimetry method, we can achieve time-dependent velocity, and then ensemble-averaged velocity of the micro-parts. The results show that for differentlandpbut the same relative scalel/p, the profiles of micro-part velocity against the characteristic surface velocitypfare similar. However, they shift alongpfaxis depending onp. Furthermore, the profiles are the similar for the relative scalel/pof 4 to 100. It seems that the motion of micro-part depends on characteristic surface velocitypfthan the relative scalel/pforl/plarger than a certain value.


2021 ◽  
Author(s):  
Mario Oliveira Neto ◽  
Adriano Freitas Fernandes ◽  
Vassili Piiadov ◽  
Aldo Felix Craievich ◽  
Evandro Ares Araújo ◽  
...  

2002 ◽  
Vol 14 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Panagiotis Ioakimidis ◽  
Vasilios Gerodimos ◽  
Eleftherios Kellis ◽  
Spiros Kellis

Fifteen young basketball players (aged 14.4 – 0.5 yrs) underwent two identical testing sessions spaced one week apart, to determine the reliability of maximum isometric force and force-time parameters during a maximal bilateral isometric leg press effort. The maximal isometric force (MIF), the ratio of maximal force to time (TMIF) to attain maximal force (ARMIF), starting strength (F50), and on a relative scale the time taken to increase the force from 10% to 30%, 60%, and 90% of maximal force were calculated. High intraclass correlation coefficients (ICC) were found for MIF (0.96), ARMIF (0.85), and F50 (0.90). On the relative scale, the ICCs for the times to produce 30%, 60%, and 90% of maximum force were 0.94, 0.95, 0.95, respectively. The present results indicate that maximum isometric force and the force-time parameters during a bilateral leg press can be measured reliably in pubertal basketball players.


1981 ◽  
Vol 32 (5) ◽  
pp. 783 ◽  
Author(s):  
WJ Collins

The effects of length of growing season and defoliation on seed yield and hard-seededness were examined in two strains of subterranean clover (Seaton Park, Midland B) grown in swards in the field. All plots were sown at the same time and the length of growing season was varied by altering the time of finish of the season (by withholding water). There were three length of growing season treatments: T1 (short), T2 (intermediate) and T3 (control). The defoliation treatments were D0, uncut (control), and D1, defoliated at weekly intervals until the commencement of flowering. Reducing the length of growing season drastically reduced seed yield. Thus when the growing season was only 3 weeks shorter than the control (i.e. T2 compared with T3), seed yields averaged over strains and defoliations were reduced by at least one half. With a further reduction of 2 weeks in the length of the season (T1) seed yields were only about one-third of those obtained in the control (T3). The reductions in seed yield were due to reductions in both the number of mature burrs produced and to a lesser extent in mean weight per seed. Although defoliation increased seed yield in all growing seasons, the effect when measured on a relative scale was greater in T2 than in either T1 or T3. But on an absolute scale the size of the response was greater in T2 and T3 than in T1. The rate of breakdown of hard-seededness was faster in Seaton Park than in Midland B, but it decreased in both strains with increasing length of growing season.


2020 ◽  
Vol 32 (1) ◽  
pp. 43-65
Author(s):  
Fanlin Kong ◽  
Huiquan Bi ◽  
Michael McLean ◽  
Fengri Li

AbstractOver the past 50 years, crown asymmetry of forest trees has been evaluated through several indices constructed from the perspective of projected crown shape or displacement but often on an ad hoc basis to address specific objectives related to tree growth and competition, stand dynamics, stem form, crown structure and treefall risks. Although sharing some similarities, these indices are largely incoherent and non-comparable as they differ not only in the scale but also in the direction of their values in indicating the degree of crown asymmetry. As the first attempt at devising normative measures of crown asymmetry, we adopted a relative scale between 0 for perfect symmetry and 1 for extreme asymmetry. Five existing crown asymmetry indices (CAIs) were brought onto this relative scale after necessary modifications. Eight new CAIs were adapted from measures of circularity for digital images in computer graphics, indices of income inequality in economics, and a bilateral symmetry indicator in plant leaf morphology. The performances of the 13 CAIs were compared over different numbers of measured crown radii for 30 projected crowns of mature Eucalyptus pilularis trees through benchmarking statistics and rank order correlation analysis. For each CAI, the index value based on the full measurement of 36 evenly spaced radii of a projected crown was taken as the true value in the benchmarking process. The index (CAI13) adapted from the simple bilateral symmetry measure proved to be the least biased and most precise. Its performance was closely followed by that of three other CAIs. The minimum number of crown radii that is needed to provide at least an indicative measure of crown asymmetry is four. For more accurate and consistent measures, at least 6 or 8 crown radii are needed. The range of variability in crown morphology of the trees under investigation also needs to be taken into consideration. Although the CAIs are from projected crown radii, they can be readily extended to individual tree crown metrics that are now commonly extracted from LiDAR and other remotely sensed data. Adding a normative measure of crown asymmetry to individual tree crown metrics will facilitate the process of big data analytics and artificial intelligence in forestry wherever crown morphology is among the factors to be considered for decision making in forest management.


Sign in / Sign up

Export Citation Format

Share Document