short t2
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Baoyan Li ◽  
◽  
Hasan Kesserwan ◽  
Gudong Jin ◽  
S. Mark Ma ◽  
...  

Most nuclear magnetic resonance (NMR)-based petrophysics models, such as pore structure characterization and permeability prediction, were developed using T2 distributions measured at fully water-saturated conditions (i.e., Sw = 1). The downhole implementation of those models across the hydrocarbon zones is disputable due to partial saturation (Sw < 1) conditions; hence, a correction to such effects on T2 distributions is required. This paper provides a critical review of the fluid substitution methods currently available in the industry and presents an improved method for enhanced formation evaluation. In the new method presented, an effective irreducible water saturation model is used to account for the pore structure and capillary pressure effects, which were barely considered by the currently available NMR fluid substitution methods. For water-wet reservoir rocks, the typical NMR T2 distribution at the partial saturation condition displays a clear separation between the wetting and nonwetting phases. The water phase can be classified as irreducible and movable fluid volumes. Then, using a T2 mapping relationship and a total porosity constraint, the T2 distribution of movable water at Sw < 1 is shifted and amplified to determine the T2 distribution of movable water at Sw = 1. To validate the new method, NMR measurements were conducted on sandstone samples at Sw = 1 as well as Sw < 1. The reconstructed T2 distribution at Sw = 1 was compared with the measured T2 distribution at Sw = 1. Results showed that the reconstructed T2 distribution matched very well with the T2 distribution measured at Sw = 1, confirming the robustness of the new technique. Parameters used in the reconstruction methodology are observed to be a good indicator of pore connectivity. During desaturation, the water T2 in large pores shifts to a shorter T2 because of the enhanced surface relaxation as the water volume decreases while the surface area remains constant. Therefore, the amplitude at the short T2 increases. The increased amplitude was remapped to large pores in reconstructing T2 spectra of full saturation.


Cartilage ◽  
2020 ◽  
pp. 194760352097677
Author(s):  
Saeed Jerban ◽  
Akhil Kasibhatla ◽  
Yajun Ma ◽  
Mei Wu ◽  
Yanjun Chen ◽  
...  

Objective Ultrashort echo time (UTE) magnetic resonance imaging (MRI) sequences have improved imaging of short T2 musculoskeletal (MSK) tissues. UTE-MRI combined with magnetization transfer modeling (UTE-MT) has demonstrated robust assessment of MSK tissues. This study aimed to investigate the variation of UTE-MT measures under mechanical loading in tibiofemoral cartilage and meniscus of cadaveric knee joints. Design Fourteen knee joints from young ( n = 8, 42 ± 12 years old) and elderly ( n = 6, 89 ± 4 years old) donors were scanned on a 3-T scanner under 3 loading conditions: load = 300 N (Load1), load = 500 N (Load2), and load = 0 N (Unload). UTE-MT sequences were performed at each loading condition. Macromolecular proton fraction (MMF) was calculated from UTE-MT modeling. Wilcoxon rank sum test was used to examine the MRI data differences between loading conditions. Results For young donors, MMF increased in all grouped regions of interest (meniscus [M], femoral articular cartilage [FAC], tibial articular cartilage [TAC], articular cartilage regions covered by meniscus [AC-MC], and articular cartilage regions uncovered by meniscus [AC-UC]) when the load increased from 300 to 500 N. The increases in MMF were significant for M (13.3%, P < 0.01) and AC-MC (9.2%, P = 0.04). MMF decreased in all studied regions after unloading, which was significant only for AC-MC (−8.9%, P = 0.01). For elderly donors, MRI parameters did not show significant changes by loading or unloading. Conclusion This study highlights the potential of the UTE-MT modeling combined with knee loading in differentiating between normal and abnormal knees. Average tissue deformation effects were likely higher and more uniformly distributed in the joints of young donors compared with elderly donors.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2127
Author(s):  
Natalia Łopuszyńska ◽  
Krzysztof Szczepanowicz ◽  
Krzysztof Jasiński ◽  
Piotr Warszyński ◽  
Władysław P. Węglarz

The application of the Three-Dimensional Ultra-Short Echo Time (3D UTE)pulse sequence at a high magnetic field for visualization of the distribution of 19F loaded theranostic core-shell nanocapsules with Nafion® (1,1,2,2-tetrafluoroethene; 1,1,2,2-tetrafluoro-2- [1,1,1,2,3,3-hexafluoro-3-(1,2,2-trifluoroethenoxy)propan-2-yl] oxyethanesulfonic acid) incorporated into the shell is presented. The nanocarriers were formed via the layer-by-layer technique with biodegradable polyelectrolytes: PLL (Poly-L-lysine), and with Nafion®: polymer with high 19F content. Before imaging, an MR (magnetic resonance) spectroscopy and T1 and T2 measurements were performed, resulting in values of T2 between 1.3 ms and 3.0 ms, depending on the spectral line. To overcome limitations due to such short T2, the 3D UTE pulse sequence was applied for 19F MR imaging. First Nafion® solutions of various concentrations were measured to check the detection limit of our system for the investigated molecule. Next, the imaging of a phantom containing core-shell nanocapsules was performed to assess the possibility of visualizing their distribution in the samples. Images of Nafion® containing samples with SNR ≥ 5 with acquisition time below 30 min for 19F concentration as low as 1.53 × 10−2 mmol 19F/g of sample, were obtained. This is comparable with the results obtained for molecules, which exhibit more preferable MR characteristics.


Author(s):  
Paolo Florent Felisaz ◽  
Eugenio Belatti ◽  
Xeni Deligianni ◽  
Niels Bergsland ◽  
Francesco Santini ◽  
...  

Abstract Objective The aim of this study was to develop and validate an MRI protocol based on a variable echo time (vTE) sensitive to the short T2* components of the sciatic nerve. Materials and methods 15 healthy subjects (M/F: 9/6; age: 21–62) were scanned at 3T targeting the sciatic nerve at the thigh bilaterally, using a dual echo variable echo time (vTE) sequence (based on a spoiled gradient echo acquisition) with echo times of 0.98/5.37 ms. Apparent T2* (aT2*) values of the sciatic nerves were calculated with a mono-exponential fit and used for data comparison. Results There were no significant differences in aT2* related to side, sex, age, and BMI, even though small differences for side were reported. Good-to-excellent repeatability and reproducibility were found for geometry of ROIs (Dice indices: intra-rater 0.68–0.7; inter-rater 0.70–0.72) and the related aT2* measures (intra-inter reader ICC 0.95–0.97; 0.66–0.85) from two different operators. Side-related signal-to-noise-ratio non-significant differences were reported, while contrast-to-noise-ratio measures were excellent both for side and echo. Discussion Our study introduces a novel MR sequence sensitive to the short T2* components of the sciatic nerve and may be used for the study of peripheral nerve disorders.


Author(s):  
Yunkai Ji ◽  
Jian Hou ◽  
Yongge Liu ◽  
Qingjun Du

Abstract Natural gas hydrate, as an unconventional resource, has been attracting increasing attention. Understanding the characteristics of methane hydrate formation and dissociation in porous media is important for developing gas hydrate-bearing reservoirs. This work discusses the use of low-field nuclear magnetic resonance (LF-NMR) technology to investigate the formation and dissociation of methane hydrate in the sandstone. In this work, an experimental assembly wherein methane hydrate can form and dissociate, is used to conduct LF-NMR measurements. LF-NMR, as a noninvasive measurement technology, combines the transverse relaxation time (T2) measurement with the magnetic resonance imaging (MRI). T2 measurements can explore the characteristics of methane hydrate formation and dissociation in core samples from a pore-scale perspective. MRI can display the spatial distribution of water from a core-scale perspective. The excess-gas method and the excess-water method are successively applied to form methane hydrate, and depressurization is applied to dissociate methane hydrate in the laboratory. The characteristics of methane hydrate formation and dissociation is studied in the sandstone. Experimental results show that the signal intensity of short T2 and long T2 decreases simultaneously in the process of the methane hydrate formation using the excess-gas method, indicating that methane hydrate is formed in both small and large pores. When using the excess-water method, the signal intensity of long T2 decreases, and the signal intensity of short T2 increases in the process of the methane hydrate formation, indicating that methane hydrate is mainly formed in large pores. Methane hydrate is dissociated simultaneously in both small and large pores when using the depressurization method. Water content in small pores gradually increases. Capillary pressure causes some water to remain in the core samples following dissociation. Water content in large pores decreases initially and then increases during depressurization. In the early stages of depressurization, more water leaves large pores than is generated by hydrate dissociation. In the later stages of depressurization, less water leaves the large pores than is generated by hydrate dissociation. This study may inspire the new understanding on distribution of fluid in sediments during the process of accumulation and exploitation of natural gas hydrates.


2020 ◽  
Vol 24 (04) ◽  
pp. 386-401 ◽  
Author(s):  
Saeed Jerban ◽  
Yajun Ma ◽  
Zhao Wei ◽  
Hyungseok Jang ◽  
Eric Y. Chang ◽  
...  

AbstractBone is a composite material consisting of mineral, organic matrix, and water. Water in bone can be categorized as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Bone is generally classified into two types: cortical bone and trabecular bone. Cortical bone is much denser than trabecular bone that is surrounded by marrow and fat. Magnetic resonance (MR) imaging has been increasingly used for noninvasive assessment of both cortical bone and trabecular bone. Bone typically appears as a signal void with conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times 100 to 1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. This article summarizes several quantitative MR techniques recently developed for bone evaluation. Specifically, we discuss the use of UTE and adiabatic inversion recovery prepared UTE sequences to quantify BW and PW, UTE magnetization transfer sequences to quantify collagen backbone protons, UTE quantitative susceptibility mapping sequences to assess bone mineral, and conventional sequences for high-resolution imaging of PW as well as the evaluation of trabecular bone architecture.


2019 ◽  
Vol 114-115 ◽  
pp. 237-270 ◽  
Author(s):  
Markus Weiger ◽  
Klaas P. Pruessmann
Keyword(s):  
Short T2 ◽  

2019 ◽  
Vol 61 (6) ◽  
pp. 760-767
Author(s):  
Sha Li ◽  
Xinrui Huang ◽  
Guozhen Li ◽  
Yibao Zhang ◽  
Zhaotong Li ◽  
...  

Background Short T2 tissues can be directly visualized by dual-echo ultrashort echo time imaging with weighted subtraction. As a type of post-processing method, exponential subtraction of ultrashort echo time images with an optimal exponential factor is expected to provide improved positive short T2 contrast. Purpose To test the feasibility and effectiveness of exponential subtraction in three-dimensional ultrashort echo time imaging and to determine the optimal exponential factor. Material and Methods A dual-echo three-dimensional ultrashort echo time sequence was implemented on a 3-T MRI system. Exponential subtraction was performed on dual three-dimensional ultrashort echo time images of the tibia of seven healthy volunteers with exponential factors in the range of 1.00–3.00 in increments of 0.01. The regions of interest, including cortical bone, marrow, and muscle, were depicted on subtracted images of different exponential factors. Contrast-to-noise ratio values were calculated from these regions of interest and then used to assess the optimal exponential factor. To determine intra-observer agreement regarding region of interest selection, paired intra-observer measurements of regions of interest in all direct subtraction images were conducted with a one-week interval and the paired measurements were assessed using Bland–Altman analysis and paired-samples t-test. Results Cortical bone can be better visualized by using exponential subtraction in three-dimensional ultrashort echo time imaging; the suggested optimal exponential factor is 1.99–2.03 in the tibia. Paired measurements showed excellent intra-observer agreement. Conclusion It is feasible to visualize cortical bone of the tibia using exponential subtraction in three-dimensional ultrashort echo time imaging. Compared with weighted subtraction images, exponential subtraction images with an optimal exponential factor provide enhanced visualization of short T2 tissues.


Sign in / Sign up

Export Citation Format

Share Document