The Application of Machine Learning Algorithm Applied to 3Hs Risk Assessment

Author(s):  
Guixia Kang ◽  
Bo Yang ◽  
Dongli Wei ◽  
Ling Li
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dan Chen

Government debt risk is an important factor affecting macroeconomic stability and public expectation. The key to its prevention and control lies in early warning and early prevention. This paper builds an effective government debt risk assessment system based on machine learning algorithm. According to forming the performance of local government debt risk and its internal and external influencing factors, this study applies the analytic hierarchy process, entropy method, and BP neural network method to construct the local government risk assessment index system, which includes the primary and secondary indexes including the explicit debt risk, the contingent implicit debt risk, and the financial and economic operation risk. Using this system, this study carries on the government debt risk comprehensive weight assignment, the fiscal revenue forecast, the default probability calculation, the safety scale forecast, and finally the government debt risk assessment of the validity analysis. The system can provide signal guidance and policy reference for finance to cope with risks in advance, arrange the priority order of debt repayment, optimize the structure of fiscal revenue and expenditure, etc.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


Sign in / Sign up

Export Citation Format

Share Document