Metagenomic Next-Generation Sequencing for Pathogen Detection and Identification

Author(s):  
Steve Miller ◽  
Charles Chiu
2021 ◽  
Vol 12 ◽  
Author(s):  
Bangchuan Hu ◽  
Yue Tao ◽  
Ziqiang Shao ◽  
Yang Zheng ◽  
Run Zhang ◽  
...  

Metagenomic next-generation sequencing (mNGS) and droplet digital PCR (ddPCR) have recently demonstrated a great potential for pathogen detection. However, few studies have been undertaken to compare these two nucleic acid detection methods for identifying pathogens in patients with bloodstream infections (BSIs). This prospective study was thus conducted to compare these two methods for diagnostic applications in a clinical setting for critically ill patients with suspected BSIs. Upon suspicion of BSIs, whole blood samples were simultaneously drawn for ddPCR covering 20 common isolated pathogens and four antimicrobial resistance (AMR) genes, mNGS, and blood culture. Then, a head-to-head comparison was performed between ddPCR and mNGS. A total of 60 episodes of suspected BSIs were investigated in 45 critically ill patients, and ddPCR was positive in 50 (83.3%), mNGS in 41 (68.3%, not including viruses), and blood culture in 10 (16.7%) episodes. Of the 10 positive blood cultures, nine were concordantly identified by both mNGS and ddPCR methods. The head-to-head comparison showed that ddPCR was more rapid (~4 h vs. ~2 days) and sensitive (88 vs. 53 detectable pathogens) than mNGS within the detection range of ddPCR, while mNGS detected a broader range of pathogens (126 vs. 88 detectable pathogens, including viruses) than ddPCR. In addition, a total of 17 AMR genes, including 14 blaKPC and 3 mecA genes, were exclusively identified by ddPCR. Based on their respective limitations and strengths, the ddPCR method is more useful for rapid detection of common isolated pathogens as well as AMR genes in critically ill patients with suspected BSI, whereas mNGS testing is more appropriate for the diagnosis of BSI where classic microbiological or molecular diagnostic approaches fail to identify causative pathogens.


2016 ◽  
Vol 54 (4) ◽  
pp. 919-927 ◽  
Author(s):  
Mohammad R. Hasan ◽  
Arun Rawat ◽  
Patrick Tang ◽  
Puthen V. Jithesh ◽  
Eva Thomas ◽  
...  

Next-generation sequencing (NGS) technology has shown promise for the detection of human pathogens from clinical samples. However, one of the major obstacles to the use of NGS in diagnostic microbiology is the low ratio of pathogen DNA to human DNA in most clinical specimens. In this study, we aimed to develop a specimen-processing protocol to remove human DNA and enrich specimens for bacterial and viral DNA for shotgun metagenomic sequencing. Cerebrospinal fluid (CSF) and nasopharyngeal aspirate (NPA) specimens, spiked with control bacterial and viral pathogens, were processed using either a commercially available kit (MolYsis) or various detergents followed by DNase prior to the extraction of DNA. Relative quantities of human DNA and pathogen DNA were determined by real-time PCR. The MolYsis kit did not improve the pathogen-to-human DNA ratio, but significant reductions (>95%;P< 0.001) in human DNA with minimal effect on pathogen DNA were achieved in samples that were treated with 0.025% saponin, a nonionic surfactant. Specimen preprocessing significantly decreased NGS reads mapped to the human genome (P< 0.05) and improved the sensitivity of pathogen detection (P< 0.01), with a 20- to 650-fold increase in the ratio of microbial reads to human reads. Preprocessing also permitted the detection of pathogens that were undetectable in the unprocessed samples. Our results demonstrate a simple method for the reduction of background human DNA for metagenomic detection for a broad range of pathogens in clinical samples.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S17-S17
Author(s):  
Krow Ampofo ◽  
Andrew Pavia ◽  
Anne J Blaschke ◽  
Robert Schlaberg

Abstract Background Species-specific polymerase chain reaction (PCR) testing of pleural fluid (PF) from children with parapneumonic effusion (PPE) has increased pathogen identification in pediatric PPE. However, a pathogen is not detected in 25–35% of cases. Hypothesis-free, next-generation sequencing (NGS) provides a more comprehensive alternative and has led to pathogen detection in PCR-negative samples. However, the utility of NGS in the evaluation of PF from children with PPE is unknown. Methods Archived PF (n = 20) from children younger than 18 years with PPE and hospitalized at Primary Children’s Hospital, Utah, in 2015 and previously tested by PCR were evaluated. Ten PCR-negative and 10 PCR-positive PF specimens were tested using RNA-seq at an average depth of 7.7×106 sequencing reads per sample. NGS data were analyzed with Taxonomer. We compared pathogens detected by blood and PF culture, PCR, and NGS. Results Overall, compared with blood/PF culture, PF PCR and PF NGS testing of PF increased bacterial identification from 15% to 50% (P &lt; 0.05) and 65% (P = 0.003), respectively. Pathogen detection in PF by PCR and NGS were comparable (50 vs. 65%, p = NS) (Table). However, compared with PF PCR, NGS significantly increased detection of S. pyogenes (20% vs. 55%; P &lt; 0.05), with 100% concordance when detected by PCR and culture. Detection of Fusobacterium spp. (10 vs. 10%) by PF NGS and PF PCR were comparable. In contrast, there was no detection of S. pneumoniae (15 vs. 0%) by PF NGS compared with PF PCR. Conclusion PF NGS testing significantly improves bacterial identification and comparable to PF PCR testing, which can help inform antimicrobial selection. However there were differences in detection of S. pneumoniae and S. pyogenes. Further studies of NGS testing of PF of children with PPE are needed to assess its potential in the evaluation of PPE in children. Disclosures A. J. Blaschke, BioFire Diagnostics LLC: Collaborator, Have intellectual property in BioFire Diagnostics through the University of Utah and Investigator, Licensing agreement or royalty and Research support; R. Schlaberg, IDbyDNA: Co-founder, Consultant and Shareholder, Stock


Author(s):  
Wei Gu ◽  
Xianding Deng ◽  
Marco Lee ◽  
Yasemin D. Sucu ◽  
Shaun Arevalo ◽  
...  

Author(s):  
Yi-Yi Qian ◽  
Hong-Yu Wang ◽  
Yang Zhou ◽  
Hao-Cheng Zhang ◽  
Yi-Min Zhu ◽  
...  

Pulmonary infections are among the most common and important infectious diseases due to their high morbidity and mortality, especially in older and immunocompromised individuals. However, due to the limitations in sensitivity and the long turn-around time (TAT) of conventional diagnostic methods, pathogen detection and identification methods for pulmonary infection with greater diagnostic efficiency are urgently needed. In recent years, unbiased metagenomic next generation sequencing (mNGS) has been widely used to detect different types of infectious pathogens, and is especially useful for the detection of rare and newly emergent pathogens, showing better diagnostic performance than traditional methods. There has been limited research exploring the application of mNGS for the diagnosis of pulmonary infections. In this study we evaluated the diagnostic efficiency and clinical impact of mNGS on pulmonary infections. A total of 100 respiratory samples were collected from patients diagnosed with pulmonary infection in Shanghai, China. Conventional methods, including culture and standard polymerase chain reaction (PCR) panel analysis for respiratory tract viruses, and mNGS were used for the pathogen detection in respiratory samples. The difference in the diagnostic yield between conventional methods and mNGS demonstrated that mNGS had higher sensitivity than traditional culture for the detection of pathogenic bacteria and fungi (95% vs 54%; p&lt;0.001). Although mNGS had lower sensitivity than PCR for diagnosing viral infections, it identified 14 viral species that were not detected using conventional methods, including multiple subtypes of human herpesvirus. mNGS detected viruses with a genome coverage &gt;95% and a sequencing depth &gt;100× and provided reliable phylogenetic and epidemiological information. mNGS offered extra benefits, including a shorter TAT. As a complementary approach to conventional methods, mNGS could help improving the identification of respiratory infection agents. We recommend the timely use of mNGS when infection of mixed or rare pathogens is suspected, especially in immunocompromised individuals and or individuals with severe conditions that require urgent treatment.


Author(s):  
Nanda Ramchandar ◽  
Jessica Burns ◽  
Nicole G Coufal ◽  
Andrew Pennock ◽  
Benjamin Briggs ◽  
...  

Abstract Background Osteoarticular infections (OAI) are frequently encountered in children. Treatment may be guided by isolation of a pathogen; however, operative cultures are often negative. Metagenomic next-generation sequencing (mNGS) allows for broad and sensitive pathogen detection that is culture-independent. We sought to evaluate the diagnostic utility of mNGS in comparison to culture and usual care testing to detect pathogens in acute osteomyelitis and/or septic arthritis in children. Methods This was a single-site study to evaluate the use of mNGS in comparison to culture to detect pathogens in acute pediatric osteomyelitis and/or septic arthritis. Subjects admitted to a tertiary children’s hospital with suspected OAI were eligible for enrollment. We excluded subjects with bone or joint surgery within 30 days of admission or with chronic osteomyelitis. Operative samples were obtained at the surgeon’s discretion per standard care (fluid or tissue) and based on imagining and operative findings. We compared mNGS to culture and usual care testing (culture and PCR) from the same site. Results We recruited 42 subjects over the enrollment period. mNGS of the operative samples identified a pathogen in 26 subjects compared to 19 subjects in whom culture identified a pathogen. In four subjects, mNGS identified a pathogen where combined usual care testing (culture and PCR) was negative. Positive predictive agreement and negative predictive agreement both were 93.0% for mNGS. Conclusion In this single site prospective study of pediatric OAI, we demonstrated the diagnostic utility of mNGS testing in comparison to culture and usual care (culture and PCR) from operative specimens.


Sign in / Sign up

Export Citation Format

Share Document