Using Energy Simulation to Make Buildings Energy Efficient

Author(s):  
Nikhil Kumar ◽  
Shalini Aggarwal
2020 ◽  
Vol 170 ◽  
pp. 01002
Author(s):  
Subbarao Yarramsetty ◽  
MVN Siva Kumar ◽  
P Anand Raj

In current research, building modelling and energy simulation tools were used to analyse and estimate the energy use of dwellings in order to reduce the annual energy use in multifamily dwellings. A three-story residential building located in Kabul city was modelled in Revit and all required parameters for running energy simulation were set. A Total of 126 experiments were conducted to estimate annual energy loads of the building. Different combinations from various components such as walls, roofs, floors, doors, and windows were created and simulated. Ultimately, the most energy efficient option in the context of Afghan dwellings was figured out. The building components consist of different locally available construction materials currently used in buildings in Afghanistan. Furthermore, the best energy efficient option was simulated by varying, building orientation in 15-degree increments and glazing area from 10% to 60% to find the most energy efficient combination. It was found that combination No. 48 was best option from energy conservation point of view and 120-degree rotational angle from north to east, of the existing building was the most energy-efficient option. Also, it was observed that 60% glazing area model consumed 24549 kWh more electricity compared to the one with 10% glazing area.


2021 ◽  
Author(s):  
Moe Otsubo

The energy performance gap between the predicted and actual energy consumption of 3 LEED for Homes certified buildings were investigated. The actual energy consumptions of the homes were found to be 23 to 77% higher than the initial energy consumption predictions made during the design stage. Revisions to the HOT2000 models to account for changes made between the design and occupancy phase of the buildings helped reduce the gap (9 to 40%). The sources of the discrepancies were found to be related to the energy modeling program’s limitations, inconsistency between the energy model and the actual building, and additional loads in the homes. The HOT2000 program, which is used for obtaining the EnerGuide rating for LEED certified homes, was compared against a dynamic energy simulation program to assess the applicability of the use of the former for energy efficient homes. The use of EnergyPlus not only allowed for a more accurate representation of the actual homes in the energy models, but an increase in the EnerGuide rating for the home was seen, which in turn equates to additional points for the home under the “Energy & Atmosphere” category for the LEED for Homes certification process


2012 ◽  
Vol 178-181 ◽  
pp. 147-150
Author(s):  
Nan Wang ◽  
Mahjoub Elnimeiri

This research explores the influence of different street geometry towards reducing the energy consumption in buildings by utilizing building energy simulation software. In different climate condition, the different street geometry has different influence on building’s energy consumption. This influence is quantified in this research. It is found that in three climate zones – Beijing, Shanghai and Guangzhou, the energy consumption of buildings is changed according to different H/W ratio of buildings. This finding determines that the optimum street geometry will be different in these climate zones. The designers should consider such difference before doing architecture or urban planning work. This research will also provide some suggestions and recommendations to the energy-efficient community design based on the findings.


2020 ◽  
Vol 8 (5) ◽  
pp. 2805-2823

The potential of energy efficient retrofitting of existing unconditioned buildings to save associated building energy consumption makes it an area of great interest. A questionnaire survey conducted amongst the architecture and civil stream students of Indian institute of Technology (IIT) Roorkee, based upon the questions related to high performance buildings parameters revealed that, energy efficiency is one of the areas which needs greatest attention. The outcome of this survey strengthens the need of such research. Therefore, this research intends to convert an existing unconditioned building to an energy efficient building. For doing so, energy savings opportunities in existing unconditioned buildings are identified and devised into a four – fold energy efficient retrofit model. This paper, evaluates the significance of the proposed four- fold energy efficient model using case studies and energy simulation modeling as a tool.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 356
Author(s):  
Fujen Wang ◽  
Kusnandar ◽  
Hungwen Lin ◽  
Minghua Tsai

With the cost of energy rising, the value of conservation grows. Interest in energy efficiency could be a sound investment or a necessary public policy. Heat pump systems provide economical alternatives of recovering heat from different sources for use in various applications. The objective of this study is to present the strategic approach on the energy efficient analysis of the water heating system retrofitted by applying a heat pump system in the dormitory of a university. Energy savings were determined by comparing field measurements of water consumption, water temperature and power consumption of the overall system before (electric resistance heating system) and after (heat pump heating system) the implementation of this project. Furthermore, the building energy simulation code (eQuest) has been applied to verify and predict the long-term energy consumption for both water heating systems. The results from energy modelling revealed the good agreement for energy simulation and field measurement data and the improvement of energy efficiency and energy savings could be achieved satisfactorily by retrofitting of a heat pump system. The energy conversion efficiency of hot water for energy consumption at 0.63 (Mcal/Mcal) could be achieved after the application of heat pump water heating system. It also presented the annual saving about USD 20,000 (NTD 600,000) for the dorm by using a heat pump heating system under the electrical billing rate of Taiwan.


Author(s):  
Ayushi Hajare ◽  
Emad Elwakil

Residential and commercial buildings account for more than half of the electricity consumption in the United States. There are numerous practical solutions to make buildings more energy efficient and sustainable. Although it is well-established that green buildings are socially, environmentally, and economically beneficial, there is still a lack of green buildings in the residential sector. The installation and upfront costs for these houses are very high. This research aims to facilitate a broader understanding of the cost benefits of energy efficient and sustainable residences. The Life cycle cost analysis (LCCA) approach and energy simulation tools have been utilized and integrated for assessing the traditional single-family residence in the United States. A comparative study has been carried out including passive and net-zero energy through energy simulation software. This analysis will benefit academic researchers and industry practitioners to analyze and evaluate challenges and opportunities in energy efficient and sustainable residences.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Md. Jewel Rana ◽  
Md. Rakibul Hasan ◽  
Md. Habibur Rahman Sobuz

PurposeApplication of appropriate shading device strategies in buildings can reduce direct solar heat gain through windows as well as optimize cooling and artificial lighting load. This study investigates the impact of common shading devices such as overhangs, fins, horizontal blinds, vertical blinds and drapes on energy consumption of an office building and suggests energy efficient shading device strategies in the contexts of unique Bangladeshi subtropical monsoon climate.Design/methodology/approachThis research was performed through the energy simulation perspective of a prototype office building using a validated building energy simulation tool eQUEST. Around 100 simulation patterns were created considering various types of shading devices and building orientations. The simulation results were analysed comprehensively to find out energy-efficient shading device strategies.FindingsOptimum overhang and fin height is equal to half of the window height in the context of the subtropical climate of Bangladesh. South and West are the most vulnerable orientations, and application of shading devices on these two orientations shows the highest reduction of cooling load and the lowest increment of lighting load. An existing building was able to save approximately 7.05% annual energy consumption by applying the shading device strategies that were suggested by this study.Originality/valueThe shading device strategies of this study can be incorporated into the Bangladesh National Building Code (BNBC) as new energy-efficient building design strategies because the BNBC does not have any codes or regulations regarding energy-efficient shading device. It can also be used as energy-efficient shading device strategies to other Southeast Asian countries with similar climatic contexts of Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document