Using Hybrid Similarity-Based Collaborative Filtering Method for Compound Activity Prediction

Author(s):  
Jun Ma ◽  
Ruisheng Zhang ◽  
Yongna Yuan ◽  
Zhili Zhao
2021 ◽  
Vol 11 (12) ◽  
pp. 5416
Author(s):  
Yanheng Liu ◽  
Minghao Yin ◽  
Xu Zhou

The purpose of POI group recommendation is to generate a recommendation list of locations for a group of users. Most of the current studies first conduct personal recommendation and then use recommendation strategies to integrate individual recommendation results. Few studies consider the divergence of groups. To improve the precision of recommendations, we propose a POI group recommendation method based on collaborative filtering with intragroup divergence in this paper. Firstly, user preference vector is constructed based on the preference of the user on time and category. Furthermore, a computation method similar to TF-IDF is presented to compute the degree of preference of the user to the category. Secondly, we establish a group feature preference model, and the similarity of the group and other users’ feature preference is obtained based on the check-ins. Thirdly, the intragroup divergence of POIs is measured according to the POI preference of group members and their friends. Finally, the preference rating of the group for each location is calculated based on a collaborative filtering method and intragroup divergence computation, and the top-ranked score of locations are the recommendation results for the group. Experiments have been conducted on two LBSN datasets, and the experimental results on precision and recall show that the performance of the proposed method is superior to other methods.


2020 ◽  
Vol 8 (4) ◽  
pp. 367
Author(s):  
Muhammad Arief Budiman ◽  
Gst. Ayu Vida Mastrika Giri

The development of the music industry is currently growing rapidly, millions of music works continue to be issued by various music artists. As for the technologies also follows these developments, examples are mobile phones applications that have music subscription services, namely Spotify, Joox, GrooveShark, and others. Application-based services are increasingly in demand by users for streaming music, free or paid. In this paper, a music recommendation system is proposed, which the system itself can recommend songs based on the similarity of the artist that the user likes or has heard. This research uses Collaborative Filtering method with Cosine Similarity and K-Nearest Neighbor algorithm. From this research, a system that can recommend songs based on artists who are related to one another is generated.


2019 ◽  
Vol 118 ◽  
pp. 152-168 ◽  
Author(s):  
Hashem Parvin ◽  
Parham Moradi ◽  
Shahrokh Esmaeili

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yingyuan Xiao ◽  
Jingjing Shi ◽  
Wenguang Zheng ◽  
Hongya Wang ◽  
Ching-Hsien Hsu

The collaborative filtering (CF) approach is one of the most successful personalized recommendation methods so far, which is employed by the majority of personalized recommender systems to predict users’ preferences or interests. The basic idea of CF is that if users had the same interests in the past they will also have similar tastes in the future. In general, the traditional CF may suffer the following problems: (1) The recommendation quality of CF based system is greatly affected by the sparsity of data. (2) The traditional CF is relatively difficult to adapt the situation that users’ preferences always change over time. (3) CF based approaches are used to recommend similar items to a user ignoring the user’s demand for variety. In this paper, to solve the above problems we build a new user-user covariance matrix to replace the traditional CF’s user-user similarity matrix. Compared with the user-user similarity matrix, the user-user covariance matrix introduces the user-user covariance to finely describe the changing trends of users’ interests. Furthermore, we propose an enhancing collaborative filtering method based on the user-user covariance matrix. The experimental results show that the proposed method can significantly improve the diversity of recommendation results and ensure the good recommendation precision.


Sign in / Sign up

Export Citation Format

Share Document