scholarly journals Identifying and Harnessing the Building Blocks of Machine Learning Pipelines for Sensible Initialization of a Data Science Automation Tool

Author(s):  
Randal S. Olson ◽  
Jason H. Moore
2021 ◽  
Vol 25 (8) ◽  
pp. 4373-4401
Author(s):  
Herath Mudiyanselage Viraj Vidura Herath ◽  
Jayashree Chadalawada ◽  
Vladan Babovic

Abstract. Despite showing great success of applications in many commercial fields, machine learning and data science models generally show limited success in many scientific fields, including hydrology (Karpatne et al., 2017). The approach is often criticized for its lack of interpretability and physical consistency. This has led to the emergence of new modelling paradigms, such as theory-guided data science (TGDS) and physics-informed machine learning. The motivation behind such approaches is to improve the physical meaningfulness of machine learning models by blending existing scientific knowledge with learning algorithms. Following the same principles in our prior work (Chadalawada et al., 2020), a new model induction framework was founded on genetic programming (GP), namely the Machine Learning Rainfall–Runoff Model Induction (ML-RR-MI) toolkit. ML-RR-MI is capable of developing fully fledged lumped conceptual rainfall–runoff models for a watershed of interest using the building blocks of two flexible rainfall–runoff modelling frameworks. In this study, we extend ML-RR-MI towards inducing semi-distributed rainfall–runoff models. The meaningfulness and reliability of hydrological inferences gained from lumped models may tend to deteriorate within large catchments where the spatial heterogeneity of forcing variables and watershed properties is significant. This was the motivation behind developing our machine learning approach for distributed rainfall–runoff modelling titled Machine Induction Knowledge Augmented – System Hydrologique Asiatique (MIKA-SHA). MIKA-SHA captures spatial variabilities and automatically induces rainfall–runoff models for the catchment of interest without any explicit user selections. Currently, MIKA-SHA learns models utilizing the model building components of two flexible modelling frameworks. However, the proposed framework can be coupled with any internally coherent collection of building blocks. MIKA-SHA's model induction capabilities have been tested on the Rappahannock River basin near Fredericksburg, Virginia, USA. MIKA-SHA builds and tests many model configurations using the model building components of the two flexible modelling frameworks and quantitatively identifies the optimal model for the watershed of concern. In this study, MIKA-SHA is utilized to identify two optimal models (one from each flexible modelling framework) to capture the runoff dynamics of the Rappahannock River basin. Both optimal models achieve high-efficiency values in hydrograph predictions (both at catchment and subcatchment outlets) and good visual matches with the observed runoff response of the catchment. Furthermore, the resulting model architectures are compatible with previously reported research findings and fieldwork insights of the watershed and are readily interpretable by hydrologists. MIKA-SHA-induced semi-distributed model performances were compared against existing lumped model performances for the same basin. MIKA-SHA-induced optimal models outperform the lumped models used in this study in terms of efficiency values while benefitting hydrologists with more meaningful hydrological inferences about the runoff dynamics of the Rappahannock River basin.


2020 ◽  
Author(s):  
Herath Mudiyanselage Viraj Vidura Herath ◽  
Jayashree Chadalawada ◽  
Vladan Babovic

Abstract. Despite showing a great success of applications in many commercial fields, machine learning and data science models in general, show a limited use in scientific fields including hydrology. The approach is often criticized for lack of interpretability and physical consistency. This has led to the emergence of new paradigms, such as Theory Guided Data Science (TGDS) and physics informed machine learning. The motivation behind such approaches is to improve the physical meaningfulness of machine learning models by blending existing scientific knowledge with learning algorithms. Following the same principles, in our prior work (Chadalawada et al., 2020), a new model induction framework was founded on Genetic Programming (GP) namely Machine Learning Rainfall-Runoff Model Induction Toolkit (ML-RR-MI). ML-RR-MI is cable of developing fully-fledged lumped conceptual rainfall-runoff models for a watershed of interest using the building blocks of two flexible rainfall-runoff modelling frameworks (FUSE and SUPERFLEX). In this study, we extend ML-RR-MI towards inducing semi-distributed rainfall-runoff models. This effort is motivated by the desire to address the decreasing meaningfulness of lumped models which tend to particularly deteriorate within large catchments where the spatial heterogeneity of forcing variables and watershed properties are significant. Henceforth, our machine learning approach for rainfall-runoff modelling titled Machine Induction Knowledge-Augmented System Hydrologique Asiatique (MIKA-SHA) captures spatial variabilities and automatically induces rainfall-runoff models for the catchment of interest without any subjectivity in model selection. Currently, MIKA-SHA learns models utilizing the model building components of FUSE and SUPERFLEX. However, the proposed framework can be coupled with any internally coherent collection of building blocks. MIKA-SHA’s model induction capabilities have been tested on the Red Creek catchment near Vestry, Mississippi, United States. The resulted model architectures through MIKA-SHA are compatible with previously reported research findings and fieldwork insights of the watershed and are readily interpretable by hydrologists.


2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Author(s):  
Sumi Helal ◽  
Flavia C. Delicato ◽  
Cintia B. Margi ◽  
Satyajayant Misra ◽  
Markus Endler

2020 ◽  
Vol 36 ◽  
pp. 49-62
Author(s):  
Nureni Olawale Adeboye ◽  
Peter Osuolale Popoola ◽  
Oluwatobi Nurudeen Ogunnusi

Data science is a concept to unify statistics, data analysis, machine learning and their related methods in order to analyze actual phenomena with data to provide better understanding. This article focused its investigation on acquisition of data science skills in building partnership for efficient school curriculum delivery in Africa, especially in the area of teaching statistics courses at the beginners’ level in tertiary institutions. Illustrations were made using Big data of selected 18 African countries sourced from United Nations Educational, Scientific and Cultural Organization (UNESCO) with special focus on some macro-economic variables that drives economic policy. Data description techniques were adopted in the analysis of the sourced open data with the aid of R analytics software for data science, as improvement on the traditional methods of data description for learning and thus open a new charter of education curriculum delivery in African schools. Though, the collaboration is not without its own challenges, its prospects in creating self-driven learning culture among students of tertiary institutions has greatly enhanced the quality of teaching, advancing students skills in machine learning, improved understanding of the role of data in global perspective and being able to critique claims based on data.


Sign in / Sign up

Export Citation Format

Share Document