Performance Analysis of Support Vector Machine and Wavelet Packet Transform Based Fault Diagnostics of Induction Motor at Various Operating Conditions

Author(s):  
Purushottam Gangsar ◽  
Rajiv Tiwari
Author(s):  
Purushottam Gangsar ◽  
Rajiv Tiwari

This paper proposes advancement in the fault diagnosis of induction motors (IMs) based on the wavelet packet transform (WPT) and the support vector machine (SVM). The aim of this work is to develop and perform the fault diagnosis of IMs at intermediate operating conditions (i.e., the speed and the load) to take care of situations where the data are limited or difficult to obtain at required speeds and loads. In order to check the capability of proposed fault diagnosis, ten different IM fault (mechanical and electrical) conditions are considered simultaneously. In order to obtain the useful information from raw time series data that can characterize each of the fault classes at various operating conditions, the wavelet packet is applied to decompose the data of vibration and current signals from the experimental test rig. Fault features are then obtained using the decomposed data and further used for the diagnosis. In this work, five different wavelet functions (i.e., the Haar, Daubechies, Symlet, Coiflet, and Discrete Meyer) are considered in order to analyze the impact of different wavelets on the IM fault diagnosis. The proposed fault diagnosis has been initially attempted for the same speed and load cases and then extended innovatively to the intermediate speed and load cases. In order to check the robustness of the proposed methodology, the diagnosis is performed for a wide range of motor operating conditions. The results show the feasibility of the proposed fault diagnosis for the successful detection and isolation of various faults of IM, even with limited data or information at some motor operating conditions.


Author(s):  
Mourad Kedadouche ◽  
Zhaoheng Liu

Achieving a precise fault diagnosis for rolling bearings under variable conditions is a problematic challenge. In order to enhance the classification and achieves a higher precision for diagnosing rolling bearing degradation, a hybrid method is proposed. The method combines wavelet packet transform, singular value decomposition and support vector machine. The first step of the method is the decomposition of the signal using wavelet packet transform and then instantaneous amplitudes and energy are computed for each component. The Second step is to apply the singular value decomposition to the matrix constructed by the instantaneous amplitudes and energy in order to reduce the matrix dimension and obtaining the fault feature unaffected by the operating condition. The features extracted by singular value decomposition are then used as an input to the support vector machine in order to recognize the fault mode of rolling bearings. The method is applied to a bearing with faults created using electro-discharge machining under laboratory conditions. Test results show that the proposed methodology is effective to classify rolling bearing faults with high accuracy.


Author(s):  
Purushottam Gangsar ◽  
Rajiv Tiwari

This paper demonstrates the development of a flexible fault diagnosis methodology that can detect up to ten different faults in the induction motor (IM), simultaneously. The major IM electrical faults, such as the broken rotor bar (BRB), phase unbalance (PUF), and stator winding fault (SWF), and mechanical faults, such as bearing fault (BF), unbalanced rotor (UR), bowed rotor (BR), and misaligned rotor (MR), are considered with different fault severities for the diagnosis. The experiments are conducted with three varying loads and seven different speeds, and the frequency domain vibration and current data are acquired at a relatively low sampling rate of 1 kHz. Several statistical features are extracted and then the best feature-set is selected using the wrapper model. Thereafter, a data classification tool based on the support vector machine (SVM) is used for the fault characterization. Initially, a multi-fault diagnosis is performed by training and testing the SVM at the same operating conditions (i.e., load and speed). The performance of the classifier is found to be very good at all IM operating conditions. The main focus of this study lies in overcoming the fault diagnosis, where the data are unavailable at required operating conditions. This is accomplished by employing interpolation and extrapolation strategies for different loads and speeds. The proposed methodology not only solves practical problem of unavailability of data at different operating conditions but also shows good performance and takes low computation time, which are vital requirements of an online intelligent condition monitoring system.


Author(s):  
Mehmet Yumurtaci ◽  
Gokhan Gokmen ◽  
Tahir Cetin Akinci

In this study, an analysis was conducted by using discrete wavelet packet transform (DWPT) and support vector machine (SVM) methods to determine undamaged and cracked plates. The pendulum was used to land equal impacts on plates in this experimental study. Sounds, which emerge from plates as a result of the impacts applied to undamaged and cracked plates, are sound signals used in the analysis and DWPT of these sound signals were obtained with 128 decompositions for feature extraction. The first four components, reflecting the characteristics of undamaged and cracked plates within these 128 components, were selected for enhancing the performance of the classifier and energy values were used as feature vectors. In the study, the SVM model was created by selecting appropriate C and γ parameters for the classifier. Undamaged and cracked plates were seen to be successfully identified by an analysis of the training and testing phases. Undamaged and cracked statuses of the plates that are undamaged and have the analysis had identified different cracks. The biggest advantage of this analysis method used is that it is high-precision, is relatively low in cost regarding experimental equipment and requires hardware.


2019 ◽  
Vol 19 (1) ◽  
pp. 156-172 ◽  
Author(s):  
Jinxiu Qu ◽  
Changquan Shi ◽  
Feng Ding ◽  
Wenjuan Wang

A viscoelastic sandwich structure is widely used in mechanical equipment, but therein viscoelastic layers inevitably suffer from aging which changes the dynamic characteristics of the structure and influences the whole performance of the equipment. Hence, accurate and automatic aging state recognition of the viscoelastic sandwich structure is very significant to monitor structural health state and guarantee equipment operating reliably. To fulfill this task, by analyzing the sensor-based vibration response signals, a novel aging state recognition approach of the viscoelastic sandwich structure based on permutation entropy of dual-tree complex wavelet packet transform and generalized Chebyshev support vector machine is proposed in this article. To extract effective aging feature information, the measured nonlinear and non-stationary vibration response signals are processed by dual-tree complex wavelet packet transform, and multiple permutation entropy features are extracted from the frequency-band signals to reflect structural aging states. For accurate and automatic aging state classification, generalized Chebyshev kernel is introduced, and multi-class generalized Chebyshev support vector machine is developed to classify structural aging states. In order to demonstrate the effectiveness of the proposed method, a typical viscoelastic sandwich structure is designed and fabricated, and various structural aging states are created through the hot oxygen–accelerated aging of viscoelastic layers. The testing results show that the proposed method can recognize the different structural aging states accurately and automatically. In addition, the superiority of dual-tree complex wavelet packet transform in processing vibration response signals and the performance of generalized Chebyshev support vector machine in classifying structural aging states are respectively validated by comparing with the commonly used methods.


Sign in / Sign up

Export Citation Format

Share Document