Large-Eddy Simulation of Near-Wall Turbulence

Author(s):  
C. Härtel ◽  
L. Kleiser
Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 65 ◽  
Author(s):  
Arne Heinrich ◽  
Guido Kuenne ◽  
Sebastian Ganter ◽  
Christian Hasse ◽  
Johannes Janicka

Combustion will play a major part in fulfilling the world’s energy demand in the next 20 years. Therefore, it is necessary to understand the fundamentals of the flame–wall interaction (FWI), which takes place in internal combustion engines or gas turbines. The FWI can increase heat losses, increase pollutant formations and lowers efficiencies. In this work, a Large Eddy Simulation combined with a tabulated chemistry approach is used to investigate the transient near wall behavior of a turbulent premixed stoichiometric methane flame. This sidewall quenching configuration is based on an experimental burner with non-homogeneous turbulence and an actively cooled wall. The burner was used in a previous study for validation purposes. The transient behavior of the movement of the flame tip is analyzed by categorizing it into three different scenarios: an upstream, a downstream and a jump-like upstream movement. The distributions of the wall heat flux, the quenching distance or the detachment of the maximum heat flux and the quenching point are strongly dependent on this movement. The highest heat fluxes appear mostly at the jump-like movement because the flame behaves locally like a head-on quenching flame.


Author(s):  
Soshi Kawai

This paper addresses the error in large-eddy simulation with wall-modeling (i.e., when the wall shear stress is modeled and the viscous near-wall layer is not resolved): the error in estimating the wall shear stress from a given outer-layer velocity field using auxiliary near-wall RANS equations where convection is not neglected. By considering the behavior of turbulence length scales near a wall, the cause of the errors is diagnosed and solutions that remove the errors are proposed based solidly on physical reasoning. The resulting method is shown to accurately predict equilibrium boundary layers at very high Reynolds number, with both realistic instantaneous fields (without overly elongated unphysical near-wall structures) and accurate statistics (both skin friction and turbulence quantities).


Author(s):  
Takashi Takata ◽  
Akira Yamaguchi ◽  
Masaaki Tanaka ◽  
Hiroyuki Ohshima

Turbulent statistics near a structural surface, such as a magnitude of temperature fluctuation and its frequency characteristic, play an important role in damage progression due to thermal stress. A Large Eddy Simulation (LES) has an advantage to obtain the turbulent statistics especially in terms of the frequency characteristic. However, it still needs a great number of computational cells near a wall. In the present paper, a two-layer approach based on boundary layer approximation is extended to an energy equation so that a low computational cost is achieved even in a large-scale LES analysis to obtain the near wall turbulent statistics. The numerical examinations are carried out based on a plane channel flow with constant heat generation. The friction Reynolds numbers (Reτ) of 395 and 10,000 are investigated, while the Prandtl number (Pr) is set to 0.71 in each analysis. It is demonstrated that the present method is cost-effective for a large-scale LES analysis.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Siniša Krajnović ◽  
Per Ringqvist ◽  
Branislav Basara

The paper presents a partially averaged Navier–Stokes (PANS) simulation of the flow around a cuboid influenced by crosswind. The results of the PANS prediction are validated against experimental data and results of a large-eddy simulation (LES) made using the same numerical conditions as PANS. The PANS shows good agreement with the experimental data. The prediction of PANS was found to be better than that of the LES in flow regions where simulations suffered from poor near-wall resolution.


2011 ◽  
Vol 686 ◽  
pp. 507-533 ◽  
Author(s):  
M. Inoue ◽  
D. I. Pullin

AbstractA near-wall subgrid-scale (SGS) model is used to perform large-eddy simulation (LES) of the developing, smooth-wall, zero-pressure-gradient flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. Large-eddy simulations of the turbulent boundary layer are reported at Reynolds numbers ${\mathit{Re}}_{\theta } $ based on the free-stream velocity and the momentum thickness in the range ${\mathit{Re}}_{\theta } = 1{0}^{3} \text{{\ndash}} 1{0}^{12} $. Results include the inverse square-root skin-friction coefficient, $ \sqrt{2/ {C}_{f} } $, velocity profiles, the shape factor $H$, the von Kármán ‘constant’ and the Coles wake factor as functions of ${\mathit{Re}}_{\theta } $. Comparisons with some direct numerical simulation (DNS) and experiment are made including turbulent intensity data from atmospheric-layer measurements at ${\mathit{Re}}_{\theta } = O(1{0}^{6} )$. At extremely large ${\mathit{Re}}_{\theta } $, the empirical Coles–Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that LES is suggestive of the asymptotic, infinite Reynolds number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum ${\mathit{Re}}_{\theta } $ of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger ${\mathit{Re}}_{\theta } $ could be achieved with quad- or higher-precision arithmetic.


Fluids ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 197 ◽  
Author(s):  
Ahmad Fakhari

The aim of this work is to propose a new wall model for separated flows which is combined with large eddy simulation (LES) of the flow field in the whole domain. The model is designed to give reasonably good results for engineering applications where the grid resolution is generally coarse. Since in practical applications a geometry can share body fitted and immersed boundaries, two different methodologies are introduced, one for body fitted grids, and one designed for immersed boundaries. The starting point of the models is the well known equilibrium stress model. The model for body fitted grid uses the dynamic evaluation of the von Kármán constant κ of Cabot and Moin (Flow, Turbulence and Combustion, 2000, 63, pp. 269–291) in a new fashion to modify the computation of shear velocity which is needed for evaluation of the wall shear stress and the near-wall velocity gradients based on the law of the wall to obtain strain rate tensors. The wall layer model for immersed boundaries is an extension of the work of Roman et al. (Physics of Fluids, 2009, 21, p. 101701) and uses a criteria based on the sign of the pressure gradient, instead of one based on the friction velocity at the projection point, to construct the velocity under an adverse pressure gradient and where the near-wall computational node is in the log region, in order to capture flow separation. The performance of the models is tested over two well-studied geometries, the isolated two-dimensional hill and the periodic two-dimensional hill, respectively. Sensitivity analysis of the models is also performed. Overall, the models are able to predict the first and second order statistics in a reasonable way, including the position and extension of the downward separation region.


Sign in / Sign up

Export Citation Format

Share Document