Analysis of Node Energy Consumption in Sensor Networks

Author(s):  
Katja Schwieger ◽  
Heinrich Nuszkowski ◽  
Gerhard Fettweis
2009 ◽  
Vol 5 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Saoucene Mahfoudh ◽  
Pascale Minet

In wireless ad hoc and sensor networks, an analysis of the node energy consumption distribution shows that the largest part is due to the time spent in the idle state. This result is at the origin of SERENA, an algorithm to SchEdule RoutEr Nodes Activity. SERENA allows router nodes to sleep, while ensuring end-to-end communication in the wireless network. It is a localized and decentralized algorithm assigning time slots to nodes. Any node stays awake only during its slot and the slots assigned to its neighbors, it sleeps the remaining time. Simulation results show that SERENA enables us to maximize network lifetime while increasing the number of user messages delivered. SERENA is based on a two-hop coloring algorithm, whose complexity in terms of colors and rounds is evaluated. We then quantify the slot reuse. Finally, we show how SERENA improves the node energy consumption distribution and maximizes the energy efficiency of wireless ad hoc and sensor networks. We compare SERENA with classical TDMA and optimized variants such as USAP in wireless ad hoc and sensor networks.


2011 ◽  
Vol 03 (01) ◽  
pp. 18-23 ◽  
Author(s):  
Hai-Ying Zhou ◽  
Dan-Yan Luo ◽  
Yan Gao ◽  
De-Cheng Zuo

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 205
Author(s):  
Jia Yang ◽  
Jian-Shuang Bai ◽  
Qiang Xu

The node energy consumption rate is not dynamically estimated in the online charging schemes of most wireless rechargeable sensor networks, and the charging response of the charging-needed node is fairly poor, which results in nodes easily generating energy holes. Aiming at this problem, an energy hole avoidance online charging scheme (EHAOCS) based on a radical basis function (RBF) neural network, named RBF-EHAOCS, is proposed. The scheme uses the RBF neural network to predict the dynamic energy consumption rate during the charging process, estimates the optimal threshold value of the node charging request on this basis, and then determines the next charging node per the selected conditions: the minimum energy hole rate and the shortest charging latency time. The simulation results show that the proposed method has a lower node energy hole rate and smaller charging node charging latency than two other existing online charging schemes.


2014 ◽  
Vol 536-537 ◽  
pp. 744-747
Author(s):  
Zhong Min Li

Energy consumption is an open issue in research field of Wireless Sensor Networks (WSNs). Low Energy Adaptive Clustering Hierarchy (LEACH) protocol is the most additional routing protocol in WSNs. In LEACH, Cluster Head (CH) is selected randomly, not considering any parameter such as node energy, distance, which causes shortening its lifetime while energy consumption is unbalanced in WSNs. In this paper, it proposes a new LEACH-based protocol, energy consumption balance LEACH protocol. Firstly, all nodes are grouped based on their locations, and a CH is elected in every group, which ensures CHs even distribution in the network area. And an important factor selecting CHs, node energy is considered, which further energy consumption in WSNs. The results of simulation show that ECB-LEACH can increase energy efficiency and prolong the network lifetime.


2012 ◽  
Vol 588-589 ◽  
pp. 664-667 ◽  
Author(s):  
Shuai Chen ◽  
Ling Ling Chen ◽  
Ren Yi Shu

With the energy consumption, the new route may be reconstructed with energy sufficient nodes. In order to evaluate energy of nodes, an energy consumption model was raised to calculate node energy in wireless sensor networks. The model of nodes was setup in data structure, the energy consumption model was setup in the rule of energy consumption and the wireless radio model of wireless sensor networks was setup in the rule of wireless radio. The simulation algorithm was designed and realized. The result shows that the model can simulate energy consumption for wireless sensor networks which is helpful for route algorithm.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Sign in / Sign up

Export Citation Format

Share Document