scholarly journals Prediction of Binding Sites in Protein-Nucleic Acid Complexes

Author(s):  
Namshik Han ◽  
Kyungsook Han
Author(s):  
Stephen D. Jett

The electrophoresis gel mobility shift assay is a popular method for the study of protein-nucleic acid interactions. The binding of proteins to DNA is characterized by a reduction in the electrophoretic mobility of the nucleic acid. Binding affinity, stoichiometry, and kinetics can be obtained from such assays; however, it is often desirable to image the various species in the gel bands using TEM. Present methods for isolation of nucleoproteins from gel bands are inefficient and often destroy the native structure of the complexes. We have developed a technique, called “snapshot blotting,” by which nucleic acids and nucleoprotein complexes in electrophoresis gels can be electrophoretically transferred directly onto carbon-coated grids for TEM imaging.


2021 ◽  
Vol 22 (5) ◽  
pp. 2647
Author(s):  
M. Quadir Siddiqui ◽  
Maulik D. Badmalia ◽  
Trushar R. Patel

Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and functions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share similarities with transcriptional regulators and have positively charged electrostatic patches, which may indicate that they have previously unanticipated nucleic acid binding properties. Intrinsic dynamics analysis of Lim domains suggest that only Lim1 has similar internal dynamics properties, unlike Lim2/3. Furthermore, we analyzed protein expression and mutational frequency in various malignancies, as well as mapped protein-protein interaction networks they are involved in. Overall, our comprehensive bioinformatic analysis suggests that these proteins may play important roles in mediating protein-protein and protein-nucleic acid interactions.


1968 ◽  
Vol 46 (12) ◽  
pp. 1443-1450 ◽  
Author(s):  
Y. C. Choi ◽  
E. R. M. Kay

The uptake of protein by cells of the Ehrlich–Lettré ascites carcinoma was characterized kinetically by using hemoglobin as a model protein. An attempt was made to show that the process is not an artefact due to nonspecific adsorption of protein to the cell membrane. The kinetics of the uptake process suggested that an interaction exists between the exogenous protein and specific binding sites on the membrane. Acetylation of hemoglobin enhanced the rate of uptake of this protein. Treatment of cells with neuraminidase, phospholipase A, and Pronase resulted in an inhibition of protein uptake. The experimental evidence for the uptake of hemoglobin was supported by evidence that L-serine-U-14C-labelled hemoglobin is transported into the cytoplasm and utilized subsequently, resulting in labelling of the nucleic acid nucleotides.


2002 ◽  
Vol 296 (5) ◽  
pp. 1228-1237 ◽  
Author(s):  
Andrew G Stephen ◽  
Karen M Worthy ◽  
Eric Towler ◽  
Judy A Mikovits ◽  
Shizuko Sei ◽  
...  

Biochemistry ◽  
1980 ◽  
Vol 19 (15) ◽  
pp. 3516-3522 ◽  
Author(s):  
Timothy M. Lohman ◽  
C. Glen Wensley ◽  
Jeffrey Cina ◽  
Richard R. Burgess ◽  
M. Thomas Record

Sign in / Sign up

Export Citation Format

Share Document