scholarly journals An Uncertainty-Driven Hybrid of Intensity-Based and Feature-Based Registration with Application to Retinal and Lung CT Images

Author(s):  
Charles V. Stewart ◽  
Ying-Lin Lee ◽  
Chia-Ling Tsai
Keyword(s):  
2011 ◽  
Vol 32 (3) ◽  
pp. 237-244
Author(s):  
Hyun-Joon Lee ◽  
Young-Taek Hong ◽  
Hack-Joon Shim ◽  
Dong-Jin Kwon ◽  
Il-Dong Yun ◽  
...  

2014 ◽  
Vol 53 (04) ◽  
pp. 250-256 ◽  
Author(s):  
J. Rühaak ◽  
R. Werner ◽  
H. Handels ◽  
J. Modersitzki ◽  
T. Polzin

SummaryObjectives: Accurate registration of lung CT images is inevitable for numerous clinical applications. Usually, nonlinear intensity-based methods are used. Their accuracy is typically evaluated using corresponding anatomical points (landmarks; e.g. bifurcations of bronchial and vessel trees) annotated by medical experts in the images to register. As image registration can be interpreted as correspond ence finding problem, these corresponding landmarks can also be used in feature-based registration techniques. Recently, approaches for automated identification of such landmark correspondences in lung CT images have been presented. In this work, a novel combination of variational nonlinear intensity-based registration with an approach for automated landmark correspond ence detection in lung CT pairs is presented and evaluated.Methods: The main blocks of the proposed hybrid intensity- and feature-based registration scheme are a two-step landmark correspondence detection and the so-called CoLD (Combining Landmarks and Distance Measures) framework. The landmark correspondence identification starts with feature detection in one image followed by a blockmatching-based transfer of the features to the other image. The established correspond ences are used to compute a thin-plate spline (TPS) transformation. Within CoLD, the TPS transformation is improved by minimization of an objective function consisting of a Normalized Gradient Field distance measure and a curvature regularizer; the landmark correspondences are guaranteed to be preserved by optimization on the kernel of the discretized landmark constraints.Results: Based on ten publicly available end-inspiration/expiration CT scan pairs with anatomical landmark sets annotated by medical experts from the DIR-Lab database, it is shown that the hybrid registration approach is superior in terms of accuracy: The mean distance of expert landmarks is decreased from 8.46 mm before to 1.15 mm after registration, outperforming both the TPS transformation (1.68 mm) and a nonlinear registration without usage of automatically detected landmarks (2.44 mm). The improvement is statistically significant in eight of ten datasets in comparison to TPS and in nine of ten datasets in comparison to the intensity-based registration. Furthermore, CoLD globally estimates the breathing-induced lung volume change well and results in smooth and physiologically plausible motion fields of the lungs.Conclusions: We demonstrated that our novel landmark-based registration pipeline outperforms both TPS and the underlying nonlinear intensity-based registration without landmark usage. This highlights the potential of automatic landmark correspondence detection for improvement of lung CT registration accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 268
Author(s):  
Yeganeh Jalali ◽  
Mansoor Fateh ◽  
Mohsen Rezvani ◽  
Vahid Abolghasemi ◽  
Mohammad Hossein Anisi

Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years, several approaches, based on a deep learning framework, have been effectively applied in medical image segmentation. Among existing deep neural networks, the U-Net has provided great success in this field. In this paper, we propose a deep neural network architecture to perform an automatic lung CT image segmentation process. In the proposed method, several extensive preprocessing techniques are applied to raw CT images. Then, ground truths corresponding to these images are extracted via some morphological operations and manual reforms. Finally, all the prepared images with the corresponding ground truth are fed into a modified U-Net in which the encoder is replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture, we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced integrator module instead of simple traditional concatenators. This is to merge the extracted feature maps of the corresponding contracting path into the previous expansion of the up-convolutional layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of the proposed method where a dice coefficient index of 97.31% is achieved.


Lung cancer is a serious illness which leads to increased mortality rate globally. The identification of lung cancer at the beginning stage is the probable method of improving the survival rate of the patients. Generally, Computed Tomography (CT) scan is applied for finding the location of the tumor and determines the stage of cancer. Existing works has presented an effective diagnosis classification model for CT lung images. This paper designs an effective diagnosis and classification model for CT lung images. The presented model involves different stages namely pre-processing, segmentation, feature extraction and classification. The initial stage includes an adaptive histogram based equalization (AHE) model for image enhancement and bilateral filtering (BF) model for noise removal. The pre-processed images are fed into the second stage of watershed segmentation model for effectively segment the images. Then, a deep learning based Xception model is applied for prominent feature extraction and the classification takes place by the use of logistic regression (LR) classifier. A comprehensive simulation is carried out to ensure the effective classification of the lung CT images using a benchmark dataset. The outcome implied the outstanding performance of the presented model on the applied test images.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jinglun Liang ◽  
Guoliang Ye ◽  
Jianwen Guo ◽  
Qifan Huang ◽  
Shaohui Zhang

Malignant pulmonary nodules are one of the main manifestations of lung cancer in early CT image screening. Since lung cancer may have no early obvious symptoms, it is important to develop a computer-aided detection (CAD) system to assist doctors to detect the malignant pulmonary nodules in the early stage of lung cancer CT diagnosis. Due to the recent successful applications of deep learning in image processing, more and more researchers have been trying to apply it to the diagnosis of pulmonary nodules. However, due to the ratio of nodules and non-nodules samples used in the training and testing datasets usually being different from the practical ratio of lung cancer, the CAD classification systems may easily produce higher false-positives while using this imbalanced dataset. This work introduces a filtering step to remove the irrelevant images from the dataset, and the results show that the false-positives can be reduced and the accuracy can be above 98%. There are two steps in nodule detection. Firstly, the images with pulmonary nodules are screened from the whole lung CT images of the patients. Secondly, the exact locations of pulmonary nodules will be detected using Faster R-CNN. Final results show that this method can effectively detect the pulmonary nodules in the CT images and hence potentially assist doctors in the early diagnosis of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document