An Efficient Data Dissemination Schemes for Location Dependent Information Services

Author(s):  
KwangJin Park ◽  
MoonBae Song ◽  
Chong-Sun Hwang
2018 ◽  
Vol 25 (6) ◽  
pp. 3419-3439 ◽  
Author(s):  
Ramin Yarinezhad ◽  
Seyyed Naser Hashemi

2018 ◽  
Vol 26 (3) ◽  
pp. 25-36
Author(s):  
Deo Prakash ◽  
Neeraj Kumar ◽  
M.L. Garg

Mobile Adhoc Network (MANET) is a dynamic network without any centralized control. Due to frequent topological change, routing has been always a challenging task in these networks. This article presents optimized routing for efficient data dissemination in MANETs to meet the fast-changing technology of today's world. A novel metric for such optimized routing in MANET is proposed. The main parameters considered to evaluate this metric are the energy consumed during the communication, link stability, Packet Delivery Ratio (PDR) and traffic. The concept is based on a scenario in which a mobile node (source) sends data packets to another mobile node (destination) through its dynamically connected neighboring nodes. The path which consumes the lowest energy and also shows highest link stability is selected for consideration. In case the paths consume the same amount of energy, the highest stable path is chosen. In this manner, the most optimized path is selected. The authors' routing approach shows more efficiency than earlier in dissemination of data and information over the Mobile Ad-Hoc Networks.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Hyeonsang Cho ◽  
Jungmin So

In this paper, we propose a data dissemination protocol for asynchronous duty-cycling wireless sensor networks. In an asynchronous duty-cycling network, each node independently selects its wake-up time. In this environment, data dissemination becomes energy consuming, because broadcasting a packet does reach all neighbors but only the neighbors that are awake at the time. A node can forward its packet to all neighbors by continuously transmitting the packet for a whole wake-up interval, but it leads to high energy consumption and high dissemination delay. The idea proposed in this paper is to use opportunistic forwarding, where each node forwards the packet to a neighbor that wakes up early and receives the packet. Each node forwards the packet, as long as there is a neighboring node that has not received the packet yet. The main benefit of this opportunistic forwarding-based dissemination is that every time a packet is disseminated, it may take a different path to reach the nodes. At the beginning of dissemination, a sender needs to transmit for a very short duration of time because there are plenty of neighboring nodes to receive the packet. As more nodes receive the packet, the transmit duration of the sender becomes longer, thus consuming more energy. Since the order of dissemination is different every time, energy consumption is naturally balanced among the nodes, without explicit measures. Through extensive simulations, we show that the proposed protocol achieves longer network lifetime and shorter dissemination delay compared to other dissemination protocols in various network environments.


Sign in / Sign up

Export Citation Format

Share Document