2009 ◽  
Vol 06 (02) ◽  
pp. 343-360 ◽  
Author(s):  
AHMED JELLAL ◽  
RACHID HOUÇA

We propose an approach based on a generalized quantum mechanics to deal with the basic features of the intrinsic spin Hall effect. This can be done by considering two decoupled harmonic oscillators on the noncommutative plane and evaluating the spin Hall conductivity. Focusing on the high frequency regime, we obtain a diagonalized Hamiltonian. After getting the corresponding spectrum, we show that there is a Hall conductivity without an external magnetic field, which is noncommutativity parameter θ-dependent. This allows us to make contact with the spin Hall effect and also give different interpretations. Fixing θ, one can recover three different approaches dealing with the phenomenon.


Author(s):  
Ghenadie N. Mardari

The EPR paradox is known as an interpretive problem, as well as a technical discovery in quantum mechanics. It defined the basic features of two-quantum entanglement, as needed to study the relationships between two non-commuting variables. In contrast, four variables are observed in a typical Bell experiment. This is no longer the same problem. The full complexity of this process can only be captured by the analysis of four-quantum entanglement. Indeed, a new paradox emerges in this context, with straightforward consequences. Either quantum behavior is capable of signaling non-locality, or it is local. Both alternatives appear to contradict existing knowledge. Still, one of them has to be true, and the final answer can be obtained conclusively with a four-quantum Bell experiment.


Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

The purpose of this chapter is to introduce the Dirac equation, which will provide us with a basis for developing the relativistic quantum mechanics of electronic systems. Thus far we have reviewed some basic features of the classical relativistic theory, which is the foundation of relativistic quantum theory. As in the nonrelativistic case, quantum mechanical equations may be obtained from the classical relativistic particle equations by use of the correspondence principle, where we replace classical variables by operators. Of particular interest are the substitutions In terms of the momentum four-vector introduced earlier, this yields In going from a classical relativistic description to relativistic quantum mechanics, we require that the equations obtained are invariant under Lorentz transformations. Other basic requirements, such as gauge invariance, must also apply to the equations of relativistic quantum mechanics. We start this chapter by reexamining the quantization of the nonrelativistic Hamiltonian and draw out some features that will be useful in the quantization of the relativistic Hamiltonian. We then turn to the Dirac equation and sketch its derivation. We discuss some properties of the equation and its solutions, and show how going to the nonrelativistic limit reduces it to a Schrödinger-type equation containing spin.


Author(s):  
M. Suhail Zubairy

Maxwell showed that light consists of electric and magnetic fields that oscillate in directions perpendicular to the direction of propagation. Associated with this picture of light as an electromagnetic wave is an important property—the polarization of light. The polarization of light is related to the direction of oscillation of the electric field in an electromagnetic wave. In this chapter, the basic principles of quantum mechanics are discussed by studying the polarization property of a single photon. First the properties of a polarizer are presented and Malus’ law for polarized light is derived. Next it is shown that the basic features of quantum mechanics can be understood via an analysis of a single photon passing through a polarizer. This simple system allows an introduction of Dirac’s ket and bra notations for a quantum state. Finally the transformation properties of the quantum beam splitter and the polarization beam splitters are discussed.


10.14311/944 ◽  
2007 ◽  
Vol 47 (2-3) ◽  
Author(s):  
V. Jakubský

We present some basic features of pseudo-hermitian quantum mechanics and illustrate the use of pseudo-hermitian Hamiltonians in a description of physical systems. 


Author(s):  
Luigi Accardi

With the birth of quantum mechanics, the two disciplines that Hilbert proposed to axiomatize, probability and mechanics, became entangled and a new probabilistic model arose in addition to the classical one. Thus, to meet Hilbert’s challenge, an axiomatization should account deductively for the basic features of all three disciplines. This goal was achieved within the framework of quantum probability. The present paper surveys the quantum probabilistic axiomatization. This article is part of the themed issue ‘Hilbert’s sixth problem’.


Sign in / Sign up

Export Citation Format

Share Document