Maps Ensemble for Semi-Supervised Learning of Large High Dimensional Datasets

Author(s):  
Elie Prudhomme ◽  
Stéphane Lallich
Author(s):  
Nesma Settouti ◽  
Mostafa El Habib Daho ◽  
Mohammed El Amine Bechar ◽  
Mohammed Amine Chikh

The semi-supervised learning is one of the most interesting fields for research developments in the machine learning domain beyond the scope of supervised learning from data. Medical diagnostic process works mostly in supervised mode, but in reality, we are in the presence of a large amount of unlabeled samples and a small set of labeled examples characterized by thousands of features. This problem is known under the term “the curse of dimensionality”. In this study, we propose, as solution, a new approach in semi-supervised learning that we would call Optim Co-forest. The Optim Co-forest algorithm combines the re-sampling data approach (Bagging Breiman, 1996) with two selection strategies. The first one involves selecting random subset of parameters to construct the ensemble of classifiers following the principle of Co-forest (Li & Zhou, 2007). The second strategy is an extension of the importance measure of Random Forest (RF; Breiman, 2001). Experiments on high dimensional datasets confirm the power of the adopted selection strategies in the scalability of our method.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 779
Author(s):  
Ruriko Yoshida

A tropical ball is a ball defined by the tropical metric over the tropical projective torus. In this paper we show several properties of tropical balls over the tropical projective torus and also over the space of phylogenetic trees with a given set of leaf labels. Then we discuss its application to the K nearest neighbors (KNN) algorithm, a supervised learning method used to classify a high-dimensional vector into given categories by looking at a ball centered at the vector, which contains K vectors in the space.


Author(s):  
Jun Sun ◽  
Lingchen Kong ◽  
Mei Li

With the development of modern science and technology, it is easy to obtain a large number of high-dimensional datasets, which are related but different. Classical unimodel analysis is less likely to capture potential links between the different datasets. Recently, a collaborative regression model based on least square (LS) method for this problem has been proposed. In this paper, we propose a robust collaborative regression based on the least absolute deviation (LAD). We give the statistical interpretation of the LS-collaborative regression and LAD-collaborative regression. Then we design an efficient symmetric Gauss–Seidel-based alternating direction method of multipliers algorithm to solve the two models, which has the global convergence and the Q-linear rate of convergence. Finally we report numerical experiments to illustrate the efficiency of the proposed methods.


Author(s):  
Zequn Wang ◽  
Mingyang Li

Abstract Conventional uncertainty quantification methods usually lacks the capability of dealing with high-dimensional problems due to the curse of dimensionality. This paper presents a semi-supervised learning framework for dimension reduction and reliability analysis. An autoencoder is first adopted for mapping the high-dimensional space into a low-dimensional latent space, which contains a distinguishable failure surface. Then a deep feedforward neural network (DFN) is utilized to learn the mapping relationship and reconstruct the latent space, while the Gaussian process (GP) modeling technique is used to build the surrogate model of the transformed limit state function. During the training process of the DFN, the discrepancy between the actual and reconstructed latent space is minimized through semi-supervised learning for ensuring the accuracy. Both labeled and unlabeled samples are utilized for defining the loss function of the DFN. Evolutionary algorithm is adopted to train the DFN, then the Monte Carlo simulation method is used for uncertainty quantification and reliability analysis based on the proposed framework. The effectiveness is demonstrated through a mathematical example.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 343-357
Author(s):  
Adam Kuspa ◽  
Gad Shaulsky

William Farnsworth Loomis studied the social amoeba Dictyostelium discoideum for more than fifty years as a professor of biology at the University of California, San Diego, USA. This biographical reflection describes Dr. Loomis’ major scientific contributions to the field within a career arc that spanned the early days of molecular biology up to the present day where the acquisition of high-dimensional datasets drive research. Dr. Loomis explored the genetic control of social amoeba development, delineated mechanisms of cell differentiation, and significantly advanced genetic and genomic technology for the field. The details of Dr. Loomis’ multifaceted career are drawn from his published work, from an autobiographical essay that he wrote near the end of his career and from extensive conversations between him and the two authors, many of which took place on the deck of his beachfront home in Del Mar, California.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jenna L. Wardini ◽  
Hasti Vahidi ◽  
Huiming Guo ◽  
William J. Bowman

Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems.


Diabetes is a long-term disease that ends up in multiple side-effects. It has now become a reticent exterminator in society because it doesn’t reveal any signs hitherto to the patients until it’s too late. It leads to many complications to other organs, such as kidney, cardiovascular, liver or blood pressure [1]. This work tends to apply a unique multitask learning [2] to synchronously map the relation between manifold complications wherever every task conforms to risks of modelling of complications [3]. It also uses feature selection to reduce the set of risk factors from high-dimensional datasets. Then using the concept of correlation, it finds the degree of relativity among various sideeffects. The proposed method is able to identify the possible future health hazards identified with the diabetes patient. This will enable us to explain medical conditions and can improves healthcare applications which would help to improve disease prediction performance.


Sign in / Sign up

Export Citation Format

Share Document